Results 201 to 210 of about 1,987,633 (258)

Soft‐Layered Composites with Wrinkling‐Activated Multi‐Linear Elastic Behavior, Stress Mitigation, and Enhanced Strain Energy Storage

open access: yesAdvanced Engineering Materials, EarlyView.
In this study, exciting new bi‐/multi‐linear elastic behavior of soft elastic composites that accompany the activation of wrinkling in the embedded interfacial layers is analyzed. The new features and performance of these composite materials, including dramatic enhancements in energy storage, can be tailored by the concentration of interfacial layers ...
Narges Kaynia   +2 more
wiley   +1 more source

Research Methodologies and Role of GIS in Social Science Research

open access: yesInternational Journal of Scientific Engineering and Research, 2014
openaire   +1 more source

Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics

open access: yesAdvanced Engineering Materials, EarlyView.
Machine learning (ML) is revolutionizing the development of bioinspired ceramics. This article investigates how ML can be used to design new ceramic materials with exceptional performance, inspired by the structures found in nature. The research highlights how ML can predict material properties, optimize designs, and create advanced models to unlock a ...
Hamidreza Yazdani Sarvestani   +2 more
wiley   +1 more source

Revisiting Stability Criteria in Ball‐Milled High‐Entropy Alloys: Do Hume–Rothery and Thermodynamic Rules Equally Apply?

open access: yesAdvanced Engineering Materials, Volume 27, Issue 6, March 2025.
The stability criteria affecting the formation of high‐entropy alloys, particularly focusing in supersaturated solid solutions produced by mechanical alloying, are analyzed. Criteria based on Hume–Rothery rules are distinguished from those derived from thermodynamic relations. The formers are generally applicable to mechanically alloyed samples.
Javier S. Blázquez   +5 more
wiley   +1 more source

Assessing the Ecological Value: Monetizing Process Innovations in Tailored Forming

open access: yesAdvanced Engineering Materials, EarlyView.
This article introduces a method for evaluating the sustainability of innovations, even with limited data. The method is illustrated through an analysis of the “Tailored Forming” technology, which explores the impact of sustainability on economic value added.
Jonas Schneider   +4 more
wiley   +1 more source

Non‐Destructive and Mechanical Characterization of the Bond Quality of Co‐Extruded Titanium‐Aluminum Profiles

open access: yesAdvanced Engineering Materials, EarlyView.
This study investigates the bond quality of co‐extruded aluminum–titanium hybrid profiles, focusing on the lateral angular co‐extrusion (LACE) process. It examines how heat treatments (HT) affect intermetallic phase formation, bond strength, and material properties.
Norman Mohnfeld   +9 more
wiley   +1 more source

Comparative Wear and Friction Analysis of Sliding Surface Materials for Hydrostatic Bearing under Oil Supply Failure Conditions

open access: yesAdvanced Engineering Materials, EarlyView.
Hydrostatic bearings excel in high‐precision applications, but their performance hinges on a continuous external supply. This study evaluates various material combinations for sliding surfaces to mitigate damage during supply failures or misalignment and to discover the most effective materials identified for enhancing the reliability and efficiency of
Michal Michalec   +6 more
wiley   +1 more source

A Different Perspective on the Solid Lubrication Performance of Black Phosphorous: Friend or Foe?

open access: yesAdvanced Engineering Materials, EarlyView.
Researchers investigate black phosphorous (BP) as a standalone solid lubricant coating through ball‐on‐disc linear‐reciprocating sliding experiments in dry conditions. Testing on different metals shows BP doesn't universally reduce friction and wear. However, it achieves 33% friction reduction on rougher iron surfaces and 23% wear reduction on aluminum.
Matteo Vezzelli   +5 more
wiley   +1 more source

A Novel Simulation Approach for Damage Evolution during Tailored Forming

open access: yesAdvanced Engineering Materials, EarlyView.
Traditional damage models are struggling to accurately and efficiently simulate large‐scale three‐dimensional models with a great number of degrees of freedoms. A new gradient‐enhanced damage model based on the extended Hamilton principle can significantly reduce the computation time while ensuring mesh‐independence which is suitable to use in tailored
Fangrui Liu   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy