Tapered Fiber Bragg Grating Fabry-Pérot Cavity for Sensitivity-Enhanced Strain Sensing. [PDF]
Zhang J, Wang C, Dai R, Tang Y, Hu J.
europepmc +1 more source
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein +4 more
wiley +1 more source
A Six-Degree-of-Freedom (6-DOF) Simultaneous Measurement Method Using Dual-Wavelength Laser Sources for Compensation of Air-Turbulence-Induced Beam Deviation. [PDF]
Long F, Xia X, Zhang B, Feng Q.
europepmc +1 more source
Positive‐Tone Nanolithography of Antimony Trisulfide with Femtosecond Laser Wet‐Etching
A butyldithiocarbamic acid (BDCA) etchant is used to fabricate various micro‐ and nanoscale structures on amorphous antimony trisulfide (a‐Sb2S3) thin film via femtosecond laser etching. Numerical analysis and experimental results elucidate the patterning mechanism on gold (reflective) and quartz (transmissive) substrates.
Abhrodeep Dey +12 more
wiley +1 more source
Study on an All-Optic Temperature Sensor Based on a Low-Coherent Optical Interferometry. [PDF]
Gu F, Wen Y, Krasovskii S, Sun C.
europepmc +1 more source
Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu +11 more
wiley +1 more source
Design and Experimental Validation of a Round Inductosyn-Based Angular Measurement System. [PDF]
Wang J, Wang J, Chen J, Zhong C, Shao Y.
europepmc +1 more source
Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley +1 more source
Recent advances in radionuclide medical imaging techniques. [PDF]
Xu S +6 more
europepmc +1 more source
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam +14 more
wiley +1 more source

