Results 141 to 150 of about 263,022 (325)
In this study, a pineapple-starch-xanthan gum system was prepared using fresh pineapple juice, maize starch, and xanthan gum (XG). The feasibility of using low-field nuclear magnetic resonance (LF-NMR) to predict pineapple gels' rheological properties ...
Yunfei Bao +8 more
doaj +1 more source
This study presents a dynamic interaction between liquid resins and photopolymerized structures enabled by an in situ light‐writing setup. By controlling a three‐phase interface through localized photopolymerization, which provides physical confinement for the remaining uncured resin regions, the approach establishes a programmable pathway that ...
Kibeom Kim +3 more
wiley +1 more source
Novel Functional Materials via 3D Printing by Vat Photopolymerization
This Perspective systematically analyzes strategies for incorporating functionalities into 3D‐printed materials via Vat Photopolymerization (VP). It explores the spectrum of achievable functionalities in recently reported novel materials—such as conductive, energy‐storing, biodegradable, stimuli‐responsive, self‐healing, shape‐memory, biomaterials, and
Sergey S. Nechausov +3 more
wiley +1 more source
THE STUDY OF THE RHEOLOGICAL PROPERTIES OF PECTIN GELS WITH MONO - AND DISACCHARIDES
Antonella Dorohovich +2 more
openalex +2 more sources
Mechanically Stable and Tunable Photoactivated Peptide‐Based Hydrogels for Soft Tissue Adhesion
A collagen‐like peptide hydrogel platform is developed using supramolecular self‐assembly and light‐triggered crosslinking. It creates mechanically stable, tunable hydrogels with cytocompatibility and biodegradability, making them potential soft tissue adhesives.
Alex Ross +8 more
wiley +1 more source
This work introduces UV‐curable poly(thio)urethane (PSU) thermosets as 4D printable scaffolds responsive to oxidative stress. PSU networks with 100 wt.% polypropylene glycol (PPG) effectively suppress inflammatory markers in microglial cells to basal values.
Xabier Lopez de Pariza +10 more
wiley +1 more source
Amyloidogenic Peptide Fragments Designed From Bacterial Collagen‐like Proteins Form Hydrogel
This study identified amyloidogenic sequence motifs in bacterial collagen‐like proteins and exploited these to design peptides that self‐assemble into β‐sheet fibers and form hydrogels. One hydrogel supported healthy fibroblast growth, showing promise for biocompatible materials. Our work demonstrates that bacterial sequences can be harnessed to create
Vamika Sagar +5 more
wiley +1 more source
Coagulative granular hydrogels are composed of packed thrombin‐functionalized microgels that catalyze the conversion of fibrinogen into a secondary fibrin network, filling the interstitial voids. This bio‐inspired approach stabilizes the biomaterial to match the robustness of bulk hydrogels without compromising injectability, mimicking the initial ...
Zhipeng Deng +16 more
wiley +1 more source

