Results 31 to 40 of about 62,458 (328)

Factor equivalence of Galois modules and regulator constants [PDF]

open access: yes, 2013
We compare two approaches to the study of Galois module structures: on the one hand factor equivalence, a technique that has been used by Fr\"ohlich and others to investigate the Galois module structure of rings of integers of number fields and of their ...
Bartel, Alex
core   +4 more sources

Neutrosophic triplets in some neutrosophic rings

open access: yesCumhuriyet Science Journal, 2020
In this paper, some mistakes about the neutrosophic triplets of some neutrosophic rings in the literature are pointed out and corrected. For this purpose, the neutrosophic triplets in neutrosophic rings , and where Z, Q and R denote the ring of ...
Doğukan Ozan, Yilmaz Çeven
doaj   +1 more source

Trivial units for group rings over rings of algebraic integers [PDF]

open access: yesProceedings of the American Mathematical Society, 2005
Let G G be a nontrivial torsion group and R R be the ring of integers of an algebraic number field. The necessary and sufficient conditions are given under which R G RG has only trivial units.
Herman, Allen, Li, Yuanlin
openaire   +1 more source

Rings of Integer-Valued Continuous Functions [PDF]

open access: yesTransactions of the American Mathematical Society, 1961
During the past twenty years extensive work has been done on the ring C(X). The pioneer papers in the subject are [8] for compact X and [3] for arbitrary X. A significant part of this work has recently been summarized in the book [2]. Concerning the ring C(X, Z), very little has been written. This is natural, since C(X, Z) is less important in problems
openaire   +2 more sources

Tripotents: a class of strongly clean elements in rings

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2018
Periodic elements in a ring generate special classes of strongly clean elements. In particular, elements b such that b = b3+, which are called tripotents and include idempotents, negative of idempotents and order 2 units, are strongly clean.
Călugăreanu Grigore
doaj   +1 more source

On structure of certain periodic rings and near-rings

open access: yesInternational Journal of Mathematics and Mathematical Sciences, 2000
The aim of this work is to study a decomposition theorem for rings satisfying either of the properties xy=xpf(xyx)xq or xy=xpf(yxy)xq, where p=p(x,y),q=q(x,y) are nonnegative integers and f(t)∈tℤ[t] vary with the pair of elements x,y, and further ...
Moharram A. Khan
doaj   +1 more source

Analysis of the RSA-cryptosystem in abstract number rings

open access: yesЖурнал Белорусского государственного университета: Математика, информатика, 2020
Quantum computers can be a real threat to some modern cryptosystems (such as the RSA-cryptosystem). The analogue of the RSA-cryptosystem in abstract number rings is not affected by this threat, as there are currently no factorization algorithms using ...
Nikita V. Kondratyonok
doaj   +1 more source

Sombor index of zero-divisor graphs of commutative rings

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2022
In this paper, we investigate the Sombor index of the zero-divisor graph of ℤn which is denoted by Γ(ℤn) for n ∈ {pα, pq, p2q, pqr} where p, q and r are distinct prime numbers. Moreover, we introduce an algorithm which calculates the Sombor index of Γ(ℤn)
Gürsoy Arif   +2 more
doaj   +1 more source

Images of Real Representations of $SL_n(Z_p)$

open access: yes, 2016
In this paper, we investigate abstract homomorphism from the special linear group over complete discrete valuation rings with finite residue field, such as the ring of p-adic integers, into the general linear group over the reals.
Humphreys   +3 more
core   +1 more source

A class of rings which are algebric over the integers

open access: yesInternational Journal of Mathematics and Mathematical Sciences, 1979
A well-known theorem of N. Jacobson states that any periodic associative ring is commutative. Several authors (most notably Kaplansky and Herstein) generalized the “periodic polynomial” condition and were still able to conclude that the rings under ...
Douglas F. Rall
doaj   +1 more source

Home - About - Disclaimer - Privacy