Results 181 to 190 of about 332,624 (268)

A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai   +8 more
wiley   +1 more source

A Comprehensive Assessment and Benchmark Study of Large Atomistic Foundation Models for Phonons

open access: yesAdvanced Intelligent Discovery, EarlyView.
We benchmark six large atomistic foundation models on 2429 crystalline materials for phonon transport properties. The rapid development of universal machine learning potentials (uMLPs) has enabled efficient, accurate predictions of diverse material properties across broad chemical spaces.
Md Zaibul Anam   +5 more
wiley   +1 more source

Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation

open access: yesAdvanced Intelligent Discovery, EarlyView.
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley   +1 more source

Bayesian Exploration of Metal‐Organic Framework‐Derived Nanocomposites for High‐Performance Supercapacitors

open access: yesAdvanced Intelligent Discovery, EarlyView.
An AI‐assisted approach is introduced to decode synthesis–performance relationships in metal‐organic framework‐derived supercapacitor materials using Bayesian optimization and predictive modeling, streamlining the search for optimal energy storage properties.
David Gryc   +8 more
wiley   +1 more source

Advances in Thermal Modeling and Simulation of Lithium‐Ion Batteries with Machine Learning Approaches

open access: yesAdvanced Intelligent Discovery, EarlyView.
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy