Integrating random forest-based regression kriging for analyzing spatial variability of rainfall in arid and semi-arid regions. [PDF]
Manaf M, Ali Z, Scholz M.
europepmc +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
Artificial Neural Networks for Predicting Emissions from the Livestock Sector: A Review. [PDF]
Santoro LM +4 more
europepmc +1 more source
A Comprehensive Assessment and Benchmark Study of Large Atomistic Foundation Models for Phonons
We benchmark six large atomistic foundation models on 2429 crystalline materials for phonon transport properties. The rapid development of universal machine learning potentials (uMLPs) has enabled efficient, accurate predictions of diverse material properties across broad chemical spaces.
Md Zaibul Anam +5 more
wiley +1 more source
Robust Distributed High-Dimensional Regression: A Convoluted Rank Approach. [PDF]
Wu M.
europepmc +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source
On the interpretability of machine and deep learning techniques for predicting CBR of stabilized soil containing agro-industrial wastes. [PDF]
Ghorbanzadeh S +3 more
europepmc +1 more source
An AI‐assisted approach is introduced to decode synthesis–performance relationships in metal‐organic framework‐derived supercapacitor materials using Bayesian optimization and predictive modeling, streamlining the search for optimal energy storage properties.
David Gryc +8 more
wiley +1 more source
Modeling and forecasting air pollution for public health protection based on ML and time series models in Gulf Cooperation Council (GCC) countries. [PDF]
Daniyal M +5 more
europepmc +1 more source
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin +4 more
wiley +1 more source

