Results 181 to 190 of about 402,636 (258)

Biologically‐Inspired Melt Electrowriting for the Generation of Highly Biomimetic Functional Myocardium

open access: yesAdvanced Functional Materials, EarlyView.
In this work, melt electrowriting is used to fabricate a 3D printed scaffold design that generates engineered cardiac tissues with in‐plane contraction, mimicking natural myocardium. It is shown that these tissues display advanced maturation and functionality.
Olalla Iglesias‐García   +23 more
wiley   +1 more source

Electric Pulse Regulated MXene Based Nanozymes for Integrative Bioelectricity Immuno‐Cancer Therapy

open access: yesAdvanced Functional Materials, EarlyView.
MXenzyme‐mediated bioelectricity cancer therapy (MXenzyme‐BECT) enhances cancer cell death through irreversible depolarization, ion channel disruption, ROS generation, and immunogenic cell death. Computational simulations reveal the electrical mechanisms by which MXenzyme acts on single cells and support to predict treatment parameters. Next‐generation
Sanghee Lee   +6 more
wiley   +1 more source

Photothermal Hydrogel with Mn3O4 Nanoparticles Alleviates Intervertebral Disc Degeneration by Scavenging ROS and Regulating Extracellular Matrix Metabolism

open access: yesAdvanced Functional Materials, EarlyView.
The MPTT‐nanozyme‐hydrogel system (Mn3O4@ChS‐HA) provides a multifunctional therapeutic strategy for intervertebral disc degeneration (IVDD), effectively targeting oxidative stress and enhancing AF repair by restoring extracellular matrix (ECM) and redox homeostasis.
Yangyang Chen   +13 more
wiley   +1 more source

Multifunctional Hydroxyapatite Coated with Gallium Liquid Metal‐Based Silver Nanoparticles for Infection Prevention and Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A multifunctional hydroxyapatite (HAp) coating integrated with silver‐gallium liquid metal nanoparticles (HAp‐Ag‐GaNPs) exhibits dual antibacterial and osteogenic properties. It effectively inhibits Gram‐positive and Gram‐negative bacteria, including resistant strains, while enhancing bone regeneration.
Ngoc Huu Nguyen   +17 more
wiley   +1 more source

Cell Membrane Vesicle Camouflaged Artificial Cells

open access: yesAdvanced Functional Materials, EarlyView.
Artificial cells camouflaged with a cell membrane vesicle coating are able to assemble into synthetic aggregates that exhibit rudimentary communication capabilities. Additionally, when these artificial cells are equipped with antioxidant capabilities, they are able to protect the intracellular homeostasis in HepG2 cells present in semi‐synthetic ...
Paula De Dios Andres   +11 more
wiley   +1 more source

Strategies to Design and Optimize Artificial Antigen‐Presenting Cells for T Cell Expansion in Cancer Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley   +1 more source

Intraoral Drug Delivery: Bridging the Gap Between Academic Research and Industrial Innovations

open access: yesAdvanced Functional Materials, EarlyView.
Intraoral drug delivery offers a promising route for systemic and localized therapies, yet challenges such as enzymatic degradation, limited permeability, and microbial interactions hinder efficacy. This figure highlights innovative strategies—mucoadhesive materials, enzyme inhibitors, and permeation enhancers—to overcome these barriers.
Soheil Haddadzadegan   +4 more
wiley   +1 more source

Bacteria‐Derived Extracellular Vesicle as A “Trojan Horse” for Selective M1 Macrophage‐Targeting in A Multi‐Cellular Entanglement Environment

open access: yesAdvanced Functional Materials, EarlyView.
The temporary transition of macrophages from a pro‐inflammatory phenotype of macrophages (M1) to an anti‐inflammatory phenotype of macrophages (M2) is crucial for tissue repair and regeneration processes. Bacterial outer membrane vesicles (OMVs) are utilized as a “trojan horse” for specific M1 macrophage‐targeting and anti‐inflammatory drug delivery ...
Donglin Cai   +9 more
wiley   +1 more source

Machine Learning‐Enabled Polymer Discovery for Enhanced Pulmonary siRNA Delivery

open access: yesAdvanced Functional Materials, EarlyView.
This study provides an efficient approach to train a machine learning model by merging heterogeneous literature data to predict suitable polymers for siRNA delivery. Without the need for extensive laboratory synthesis, the machine learning enabled a virtual screening and successfully predicted a polymer that is validated for effective gene silencing in
Felix Sieber‐Schäfer   +10 more
wiley   +1 more source

Double Cross‐Linked Hydrogel for Intra‐articular Injection as Modality for Macrophages Metabolic Reprogramming and Therapy of Rheumatoid Arthritis

open access: yesAdvanced Functional Materials, EarlyView.
A hydrogel for intra‐articular injection for the treatment of rheumatoid arthritis (RA) is formulated and comprehensively studied. After administration, the hydrogel induces a metabolic reprogramming of immunometabolism of macrophages to trigger fatty acid oxidation subsequently inducing polarization of anti‐inflammatory M2 macrophages. This results in
Yutong Song   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy