Results 181 to 190 of about 763,502 (351)

Retrotransposon Expression Is Upregulated in Adulthood and Suppressed during Regeneration of the Limb in the Axolotl (Ambystoma mexicanum)

open access: yesAdvanced Biology, EarlyView.
The axolotl's remarkable regenerative abilities decline with age, the causes may include the numerous repetitive elements within its genome. This study uncovers how Ty3 retrotransposons and coexpression networks involving muscle and immune pathways respond to aging and regeneration, suggesting that transposons respond to physiological shifts and may ...
Samuel Ruiz‐Pérez   +8 more
wiley   +1 more source

Template Specificity of Eucaryotic DNA‐Dependent RNA Polymerases [PDF]

open access: bronze, 1974
Sarah Jane Flint   +3 more
openalex   +1 more source

ARTD2 activity is stimulated by RNA [PDF]

open access: yes, 2017
ADP-ribosyltransferases (ARTs) are important enzymes that regulate the genotoxic stress response and the maintenance of genome integrity. ARTD1 (PARP1) and ARTD2 (PARP2) are homologous proteins that modify themselves and target proteins by the addition ...
Bär, Dominik   +4 more
core  

Activation of SIRT1 Reduces Renal Tubular Epithelial Cells Fibrosis in Hypoxia Through SIRT1‐FoxO1‐FoxO3‐Autophagy Pathway

open access: yesAdvanced Biology, EarlyView.
Hypoxia promotes the epithelial‐mesenchymal transition (EMT) of renal tubular epithelial cells via the SIRT1‐FoxO1‐FoxO3‐autophagy pathway, thereby resulting in the fibrosis of renal tubular epithelial cells. Activation of SIRT1 or induction of autophagy inhibits this process, alleviating hypoxia‐induced fibrosis.
Guangyu Wang   +6 more
wiley   +1 more source

On the Initiation of Transcription by DNA‐Dependent RNA Polymerase from Escherichia coli [PDF]

open access: bronze, 1973
Rolf Schäfer   +3 more
openalex   +1 more source

Structure Based Inhibition of the Calicivirus RNA-Dependent RNA-Polymerase [PDF]

open access: yes, 2012
Bolognesi, Martino   +8 more
core   +1 more source

Novel Biologically Active Glass Fiber Functionalized Using Magnesium Phosphate Cement Promotes Bone and Vascular Regeneration

open access: yesAdvanced Biology, EarlyView.
In this study, a new type of bioactive glass fiber ‐based composite magnesium phosphate bone cement is prepared and verified that its mechanical strength and biological properties. In addition, the cement may have played a biologically active role in the Notch and HIF signaling pathways.
Yuzheng Lu   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy