Results 11 to 20 of about 128,027 (302)
A note on the independent roman domination in unicyclic graphs [PDF]
A Roman dominating function (RDF) on a graph \(G = (V;E)\) is a function \(f : V \to \{0, 1, 2\}\) satisfying the condition that every vertex \(u\) for which \(f(u) = 0\) is adjacent to at least one vertex \(v\) for which \(f(v) = 2\).
Mustapha Chellali, Nader Jafari Rad
doaj +3 more sources
A characterization of trees with equal Roman $\{2\}$-domination and Roman domination numbers [PDF]
Given a graph $G=(V,E)$ and a vertex $v \in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:V\rightarrow \{0,1,2\}$ be a function on $G$. The weight of $f$ is $\omega(f)=\sum_{v\in V}f(v)$ and let $V_i=\{v\in V \colon f(v)=i\}$, for $i=0,
Abel Cabrera Martinez, Ismael G. Yero
doaj +3 more sources
A note on the edge Roman domination in trees [PDF]
A subset $X$ of edges of a graph $G$ is called an \textit{edgedominating set} of $G$ if every edge not in $X$ is adjacent tosome edge in $X$. The edge domination number $\gamma'(G)$ of $G$ is the minimum cardinality taken over all edge dominating sets of
Nader Jafari Rad
doaj +3 more sources
Relating $2$-rainbow domination to weak Roman domination [PDF]
Addressing a problem posed by Chellali, Haynes, and Hedetniemi (Discrete Appl. Math. 178 (2014) 27-32) we prove $ _{r2}(G)\leq 2 _r(G)$ for every graph $G$, where $ _{r2}(G)$ and $ _r(G)$ denote the $2$-rainbow domination number and the weak Roman domination number of $G$, respectively.
José D. Alvarado +2 more
openalex +4 more sources
Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
Chellali Mustapha, Rad Nader Jafari
doaj +2 more sources
Vertex-Edge Roman Domination [PDF]
A vertex-edge Roman dominating function (or just ve-RDF) of a graph G = (V,E) is a function f : V (G) →{0, 1, 2} such that for each edge e = uv either max{f(u),f(v)}≠0 or there exists a vertex w such that either wu ∈ E or wv ∈ E and f(w) = 2. The weight of a ve-RDF is the sum of its function values over all vertices.
Kumar, H. Naresh, Venkatakrishnan, Y. B.
openaire +1 more source
Some Results on the Strong Roman Domination Number of Graphs [PDF]
Let G=(V,E) be a finite and simple graph of order n and maximum degree Δ(G). A strong Roman dominating function on a graph G is a function f:V (G)→{0, 1,… ,[Δ(G)/2 ]+ 1} satisfying the condition that every vertex v for which f(v)=0 is
Akram Mahmoodi +2 more
doaj +1 more source
Several Roman domination graph invariants on Kneser graphs [PDF]
This paper considers the following three Roman domination graph invariants on Kneser graphs: Roman domination, total Roman domination, and signed Roman domination.
Tatjana Zec, Milana Grbić
doaj +1 more source
Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
The aim of this paper is to obtain closed formulas for the perfect domination number, the Roman domination number and the perfect Roman domination number of lexicographic product graphs. We show that these formulas can be obtained relatively easily for the case of the first two parameters.
Cabrera Martínez, A. +2 more
openaire +3 more sources
Total double Roman domination in graphs [PDF]
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:V\rightarrow\{0,1,2,3\}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one ...
Guoliang Hao +2 more
doaj +1 more source

