Results 21 to 30 of about 670,635 (308)
Relating 2-Rainbow Domination To Roman Domination
For a graph G, let R(G) and yr2(G) denote the Roman domination number of G and the 2-rainbow domination number of G, respectively. It is known that yr2(G) ≤ R(G) ≤ 3/2yr2(G). Fujita and Furuya [Difference between 2-rainbow domination and Roman domination
Alvarado José D. +2 more
doaj +4 more sources
Weak signed Roman domination in graphs [PDF]
A weak signed Roman dominating function (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as a function $f:V(G)\rightarrow\{-1,1,2\}$ having the property that $\sum_{x\in N[v]}f(x)\ge 1$ for each $v\in V(G)$, where $N[v]$ is the closed ...
Lutz Volkmann
doaj +6 more sources
Restrained double Roman domination of a graph [PDF]
For a graph G = (V, E), a restrained double Roman dominating function is a function f : V → {0, 1, 2, 3} having the property that if f(v) = 0, then the vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v must have at least one neighbor w with f(w) ≥ 2, and at the same time ...
Doost Ali Mojdeh +2 more
openalex +4 more sources
Further Results on the [k]-Roman Domination in Graphs [PDF]
In 2016, Beeler et al. defined the double Roman domination as a variation of Roman domination. Sometime later, in 2021, Ahangar et al. introduced the concept of [k]-Roman domination in graphs and settled some results on the triple Roman domination case ...
J.C. Valenzuela +3 more
openalex +2 more sources
A characterization of trees with equal Roman $\{2\}$-domination and Roman domination numbers [PDF]
Given a graph $G=(V,E)$ and a vertex $v \in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:V\rightarrow \{0,1,2\}$ be a function on $G$. The weight of $f$ is $\omega(f)=\sum_{v\in V}f(v)$ and let $V_i=\{v\in V \colon f(v)=i\}$, for $i=0,
Abel Cabrera Martinez, Ismael G. Yero
doaj +2 more sources
Perfect Roman domination in middle graphs [PDF]
The middle graph $M(G)$ of a graph $G$ is the graph obtained by subdividing each edge of $G$ exactly once and joining all these newly introduced vertices of adjacent edges of $G$. A perfect Roman dominating function on a graph $G$ is a function $f : V(G) \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex $v$ with $f(v)=0$ is adjacent ...
Kijung Kim
doaj +3 more sources
On trees with equal Roman domination and outer-independent Roman domination number [PDF]
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) \to \{0, 1, 2\}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$.
S. Nazari-Moghaddam, S.M. Sheikholeslami
doaj +2 more sources
Signed total Roman domination in digraphs
Published by De Gruyter Open ...
Lutz Volkmann
openalex +5 more sources
The 2-domination and Roman domination numbers of grid graphs
We investigate the 2-domination number for grid graphs, that is the size of a smallest set $D$ of vertices of the grid such that each vertex of the grid belongs to $D$ or has at least two neighbours in $D$. We give a closed formula giving the 2-domination number of any $n \!\times\! m$ grid, hereby confirming the results found by Lu and Xu, and Shaheen
Michaël Rao, Alexandre Talon
openalex +7 more sources
Perfect Roman Domination: Aspects of Enumeration and Parameterization
Perfect Roman Dominating Functions and Unique Response Roman Dominating Functions are two ways to translate perfect code into the framework of Roman Dominating Functions.
Kevin Mann, Henning Fernau
doaj +2 more sources

