Results 21 to 30 of about 128,027 (302)

On the Quasi-Total Roman Domination Number of Graphs

open access: yesMathematics, 2021
Domination theory is a well-established topic in graph theory, as well as one of the most active research areas. Interest in this area is partly explained by its diversity of applications to real-world problems, such as facility location problems ...
Abel Cabrera Martínez   +2 more
doaj   +1 more source

Weak signed Roman domination in graphs [PDF]

open access: yesCommunications in Combinatorics and Optimization, 2020
A weak signed Roman dominating function (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as a function $f:V(G)\rightarrow\{-1,1,2\}$ having the property that $\sum_{x\in N[v]}f(x)\ge 1$ for each $v\in V(G)$, where $N[v]$ is the closed ...
Lutz Volkmann
doaj   +1 more source

Perfect Roman Domination and Unique Response Roman Domination

open access: yes, 2023
The idea of enumeration algorithms with polynomial delay is to polynomially bound the running time between any two subsequent solutions output by the enumeration algorithm. While it is open for more than four decades if all minimal dominating sets of a graph can be enumerated in output-polynomial time, it has recently been proven that pointwise-minimal
Fernau, Henning, Mann, Kevin
openaire   +2 more sources

Further Results on the Total Roman Domination in Graphs

open access: yesMathematics, 2020
Let G be a graph without isolated vertices. A function f : V ( G ) → { 0 , 1 , 2 } is a total Roman dominating function on G if every vertex v ∈ V ( G ) for which f ( v ) = 0 is adjacent to at least one vertex u ...
Abel Cabrera Martínez   +2 more
doaj   +1 more source

Roman domination in direct product graphs and rooted product graphs

open access: yesAIMS Mathematics, 2021
Let $ G $ be a graph with vertex set $ V(G) $. A function $ f:V(G)\rightarrow \{0, 1, 2\} $ is a Roman dominating function on $ G $ if every vertex $ v\in V(G) $ for which $ f(v) = 0 $ is adjacent to at least one vertex $ u\in V(G) $ such that $ f(u) = 2
Abel Cabrera Martínez   +2 more
doaj   +1 more source

On a Vizing-type integer domination conjecture [PDF]

open access: yes, 2020
Given a simple graph $G$, a dominating set in $G$ is a set of vertices $S$ such that every vertex not in $S$ has a neighbor in $S$. Denote the domination number, which is the size of any minimum dominating set of $G$, by $\gamma(G)$.
Davila, Randy, Krop, Elliot
core   +3 more sources

What Has Athens to Do with Rome? Tocqueville and the New Republicanism [PDF]

open access: yes, 2017
The recent debate over “republican” conceptions of freedom as non-domination has re- invigorated philosophical discussions of freedom. However, “neo-Roman” republicanism, which has been characterized as republicanism that respects equality, has largely ...
Jech, Alexander
core   +1 more source

On the total Roman domination stability in graphs

open access: yesAKCE International Journal of Graphs and Combinatorics, 2021
A total Roman dominating function on a graph G is a function satisfying the conditions: (i) every vertex u with f(u) = 0 is adjacent to at least one vertex v of G for which f(v) = 2; (ii) the subgraph induced by the vertices assigned non-zero values has ...
Ghazale Asemian   +3 more
doaj   +1 more source

Triple Roman domination in graphs

open access: yesApplied Mathematics and Computation, 2021
The Roman domination in graphs is well-studied in graph theory. The topic is related to a defensive strategy problem in which the Roman legions are settled in some secure cities of the Roman Empire. The deployment of the legions around the Empire is designed in such a way that a sudden attack to any undefended city could be quelled by a legion from a ...
Abdollahzadeh Ahangar, H.   +4 more
openaire   +3 more sources

Critical graphs with Roman domination number four

open access: yesAKCE International Journal of Graphs and Combinatorics, 2020
A Roman domination function on a graph G is a function satisfying the condition that every vertex u for which r(u) = 0 is adjacent to at least one vertex v for which r(v) = 2.
A. Martínez-Pérez, D. Oliveros
doaj   +1 more source

Home - About - Disclaimer - Privacy