Results 221 to 230 of about 295,445 (314)

Genetic heterogeneity and key driver mutations in the preneoplastic and earliest stages of gastric cancer. [PDF]

open access: yesGastroenterol Rep (Oxf)
Marroquín-Estrada EA   +14 more
europepmc   +1 more source

Soybean Auxin Transporter PIN3 Regulates Nitrate Acquisition to Improve Nitrogen Use and Seed Traits

open access: yesAdvanced Science, EarlyView.
Xu et al. discovers that switching off auxin transporters in soybean, PIN3a and PIN3b, disrupts auxin flow; this triggers ARF‐STF3/4 signal cascade to activate the nitrate importer NPF2.13 and soil nitrogen acquisition. Multi‐year field trials show edited soybeans maintain yield with higher oil content, offering a potential genetic route to improve ...
Huifang Xu   +16 more
wiley   +1 more source

25 years of research and therapy in arthritis. [PDF]

open access: yesArthritis Res Ther
Perlman H, Buckley CD.
europepmc   +1 more source

Small Nucleolar RNA Snord17 Promotes Self‐Renewal of Intestinal Stem Cells through Yy2 mRNA Export and Tead4 Activation

open access: yesAdvanced Science, EarlyView.
Snord17, through interaction with Thoc3, promotes nuclear export and translation of Yy2 mRNA in Snord17+/+ ISCs. The Yy2 protein subsequently binds the Tead4 promoter to promote its transcription, activating Hippo signaling, which is essential for ISC maintenance.
Peikang Zhang   +10 more
wiley   +1 more source

Rapid Decentralized Prostate Cancer Risk Stratification by Portable Liquid Biopsy Analysis within a Clinical Biosensor Validation Framework

open access: yesAdvanced Science, EarlyView.
In this work, we showcased two significant scientific advances in (i) developing a portable biosensor technology for rapid decentralized prostate cancer urinary biomarker testing and reporting, with superior performance to current clinical testing practice; and (ii) proposing a clinical validation framework (for our biosensor development) which can be ...
Kevin M. Koo   +14 more
wiley   +1 more source

Beyond Catalytic Therapy: Copper‐Paeonol Nanozymes Disrupt Fascin‐Mediated Actin Bundling to Suppress Tumor Growth and Metastasis

open access: yesAdvanced Science, EarlyView.
Copper‐paeonol nanozymes target tumor‐specific reactive oxygen species generation and disrupt fascin‐mediated actin bundling, effectively suppressing tumor growth and metastatic colonization. Abstract Fascin, an actin‐bundling protein universally upregulated in metastatic tumors, drives tumor migration and invasion by promoting filopodia and ...
Peiying Zhang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy