Results 231 to 240 of about 5,596,672 (396)

Targeting of PTP4A3 overexpression sensitises HGSOC cells towards chemotherapeutic drugs

open access: yesMolecular Oncology, EarlyView.
In HGSOC with normal KRAS expression, high PTP4A3 expression regulates autophagy activation. Conversely, in HGSOC with high KRAS expression, KRAS dictates autophagy control, and PTP4A3 is not required. When high PTP4A3 expression is inhibited, HGSOC cells are preferentially sensitised towards DNA‐damaging agents.
Ana López‐Garza   +3 more
wiley   +1 more source

RKIP overexpression reduces lung adenocarcinoma aggressiveness and sensitizes cells to EGFR‐targeted therapies

open access: yesMolecular Oncology, EarlyView.
RKIP, a metastasis suppressor protein, modulates key oncogenic pathways in lung adenocarcinoma. In silico analyses linked low RKIP expression to poor survival. Functional studies revealed RKIP overexpression reduces tumor aggressiveness and enhances sensitivity to EGFR‐targeted therapies, while its loss promotes resistance.
Ana Raquel‐Cunha   +10 more
wiley   +1 more source

The effect of arbuscular mycorrhizal fungi on the growth of wheat seedlings with contrasting phosphorus use efficiencies under low phosphorus stress. [PDF]

open access: yesBMC Plant Biol
Sun Q   +12 more
europepmc   +1 more source

Nicotinamide N‐methyltransferase promotes drug resistance in lung cancer, as revealed by nascent proteomic profiling

open access: yesMolecular Oncology, EarlyView.
AZD9291 has shown promise in targeted cancer therapy but is limited by resistance. In this study, we employed metabolic labeling and LC–MS/MS to profile time‐resolved nascent protein perturbations, allowing dynamic tracking of drug‐responsive proteins. We demonstrated that increased NNMT expression is associated with drug resistance, highlighting NNMT ...
Zhanwu Hou   +5 more
wiley   +1 more source

PARP inhibitors elicit distinct transcriptional programs in homologous recombination competent castration‐resistant prostate cancer

open access: yesMolecular Oncology, EarlyView.
PARP inhibitors are used to treat a small subset of prostate cancer patients. These studies reveal that PARP1 activity and expression are different between European American and African American prostate cancer tissue samples. Additionally, different PARP inhibitors cause unique and overlapping transcriptional changes, notably, p53 pathway upregulation.
Moriah L. Cunningham   +21 more
wiley   +1 more source

Home - About - Disclaimer - Privacy