Results 281 to 290 of about 569,037 (334)
Surface Modification of Fluorine‐Free Superhydrophobic Materials with (Ultra‐)Thin TiO2 Layers
Significant changes in wettability, with a reduction of 60o in the water conduct angle, are reported via the surface modification of fluorine‐free superhydrophobic thin films, prepared by aerosol‐assisted chemical vapor deposition, after coating a 4 nm layer of titanium dioxide on the surface using atomic layer deposition.
Julie Jalila Kalmoni +2 more
wiley +1 more source
Plasma electrolytic oxidation is combined with ultrasonic spray deposition of polycaprolactone (PCL) on WE43 magnesium alloy to improve adhesion, corrosion resistance, and cytocompatibility. The hybrid coating demonstrates significantly reduced hydrogen evolution and enhances mechanical bonding, offering a promising strategy for next‐generation ...
Seyed Masih Mousavizadeh +9 more
wiley +1 more source
Real‐time imaging and energy‐dispersive diffraction during solidification of Sn‐Bi alloy interconnect for electronic packaging applications are studied. Sn‐Bi solder alloys have generated significant interest in recent times due to their potential use in electronic packaging.
Amey Luktuke +3 more
wiley +1 more source
Bioinspired Materials, Designs, and Manufacturing Strategies for Advanced Impact‐Resistant Helmets
This review explores how bioinspired materials, structures, and manufacturing strategies transform helmet design to achieve enhanced impact resistance. Drawing inspiration from nacre, porcupine quills, beetle exoskeletons, and skull architectures, it highlights advances in auxetic lattices, nanocomposites, and functionally graded foams.
Joseph Schlager +4 more
wiley +1 more source
A Novel Simplified Approach to Physically Simulate Wire‐Arc Directed Energy Deposition Conditions
Scarcity of specialized titanium alloy wires and high experimental wire production costs impedes wire‐arc directed energy deposition (waDED) adoption in industry. A novel, wireless approach is introduced to accelerate and economize titanium alloy development.
Martin Klein +4 more
wiley +1 more source
A near infrared‐responsive microscale cantilever is developed using a 3D‐printable composite based on photocurable resin consisting of sepiolite and graphene flakes. The material absorbs 1064 nm light, causing shape transformation with an average displacement of 1.3 mm in 1.7 s. Displacement is measured via video recording.
Karolina Laszczyk +3 more
wiley +1 more source
A highly stable, low‐temperature phosphate glass is developed for multimaterial additive manufacturing of multifunctional microfluidics. Glass, metal conductors, and sacrificial polymer are coprinted, enabling monolithic fabrication. The sacrificial paste forms precise channels and decomposes during sintering.
Babak Mazinani +2 more
wiley +1 more source
Direct Recycling of Cold Work Tool Steel Swarf into New Cutting Disks via Field‐Assisted Sintering
Through a sintering method known as field‐assisted sintering technology/spark plasma sintering, cold work tool steel swarf can be directly recycled into new cutting disks. This method is capable of densifying the unconventional powder morphology of swarf, and it can also seal grinding contaminants, such as Al2O3, into the steel matrix.
Monica Keszler +4 more
wiley +1 more source
It is demonstrated that laser‐induced graphene (LIG) can be encapsulated while preserving its electrical conductivity and enhancing its mechanical properties. Unlike previous encapsulation attempts, the optimal conditions described here result in sheet resistance of ≈2 Ω sq−1, resistance increase of only 5% upon encapsulation, and vastly improved ...
Fatemeh Bayat +3 more
wiley +1 more source

