Results 91 to 100 of about 1,566,704 (340)

Structural insights into lacto‐N‐biose I recognition by a family 32 carbohydrate‐binding module from Bifidobacterium bifidum

open access: yesFEBS Letters, EarlyView.
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang   +5 more
wiley   +1 more source

Crosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10

open access: yesFEBS Letters, EarlyView.
Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...
Yuxi Huang   +8 more
wiley   +1 more source

DigR : how to model root system in its environment? 1 - the model [PDF]

open access: yes, 2011
Many models already exist through literature dealing with root system representation, among which pure structure models such as Root Typ (Pagès 2004), SimRoot (Lynch 1997), AmapSim (Jourdan 1997); diffusion PDE models (Bastian 2008; Bonneu 2009) and ...
Barczi, Jean-François   +2 more
core  

Linear discriminant analysis reveals differences in root architecture in wheat seedlings by nitrogen uptake efficiency [PDF]

open access: yes, 2017
Root architecture impacts water and nutrient uptake efficiency. Identifying exactly which root architectural properties influence these agronomic traits can prove challenging.
Andrew T A Wood   +38 more
core   +1 more source

Real‐time assay of ribonucleotide reductase activity with a fluorescent RNA aptamer

open access: yesFEBS Letters, EarlyView.
Ribonucleotide reductases (RNR) synthesize DNA building blocks de novo, making them crucial in DNA replication and drug targeting. FLARE introduces the first single‐tube real‐time coupled RNR assay, which enables isothermal tracking of RNR activity at nanomolar enzyme levels and allows the reconstruction of allosteric regulatory patterns and rapid ...
Jacopo De Capitani   +4 more
wiley   +1 more source

Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing

open access: yesFEBS Letters, EarlyView.
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley   +1 more source

Substrate specificity of Burkholderia pseudomallei multidrug transporters is influenced by the hydrophilic patch in the substrate‐binding pocket

open access: yesFEBS Letters, EarlyView.
Multidrug transporters BpeB and BpeF from the Gram‐negative pathogen Burkholderia pseudomallei have a hydrophilic patch in their substrate‐binding pocket. Drug susceptibility tests and growth curve analyses using an Escherichia coli recombinant expression system revealed that the hydrophilic patches of BpeB and BpeF are involved in the substrate ...
Ui Okada, Satoshi Murakami
wiley   +1 more source

A Linear Model to Describe Branching and Allometry in Root Architecture

open access: yesPlants, 2019
Root architecture is a complex structure that comprises multiple traits of the root phenotype. Novel platforms and models have been developed to better understand root architecture.
Joel Colchado-López   +2 more
doaj   +1 more source

Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis [PDF]

open access: yes, 2002
Plant root systems can respond to nutrient availability and distribution by changing the three-dimensional deployment of their roots: their root system architecture (RSA). We have compared RSA in homogeneous and heterogeneous nitrate and phosphate supply
Fitter, A H   +3 more
core   +1 more source

Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses.

open access: yesPlant Physiology, 2021
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of ...
Dimitris Templalexis   +8 more
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy