Results 141 to 150 of about 2,492,535 (278)
Adaptable Tile‐Based Pneumatic Origami through Structurally Coupled Localized Actuation
This article presents tile‐based pneumatic origami structures with rigid tiles and flexible fabric creases, achieving adaptable properties including morphing shape, selective multistability, and tunable stiffness. Independently pressurized folding bladders at each crease enable structurally coupled localized actuation of origami structures.
Tiantian Li, Jonathan Luntz, Diann Brei
wiley +1 more source
An idea of designing novel sensors is proposed by creating appropriate Schottky barriers and vacancies between isomorphous Core‐CuOii/ Shell‐CuOi secondary microspheres and enhancing catalytic and spill‐over effects, and electronegativity via spontaneous biphasic separation, self‐assembly, and trace‐Ni‐doping.
Bala Ismail Adamu +8 more
wiley +1 more source
This article provides an overview of recent advancements in bulk processing of rare‐earth‐free hard magnetic materials. It also addresses related simulation approaches at different scales. The research on rare‐earth‐free magnetic materials has increased significantly in recent years, driven by supply chain issues, environmental and social concerns, and
Daniel Scheiber, Andrea Bachmaier
wiley +1 more source
A Workflow to Accelerate Microstructure‐Sensitive Fatigue Life Predictions
This study introduces a workflow to accelerate predictions of microstructure‐sensitive fatigue life. Results from frameworks with varying levels of simplification are benchmarked against published reference results. The analysis reveals a trade‐off between accuracy and model complexity, offering researchers a practical guide for selecting the optimal ...
Luca Loiodice +2 more
wiley +1 more source
Curvature‐tuned auxetic lattices are designed, fabricated, and mechanically characterized to reveal how geometric curvature governs stretchability, stress redistribution, and Poisson's ratio evolution. Photoelastic experiments visualize stress pathways, while hyperelastic simulations quantify deformation mechanics.
Shuvodeep De +3 more
wiley +1 more source
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart +3 more
wiley +1 more source
Cr0.9Si0.1 protective coatings are developed to enhance the thermal‐shock and oxidation resistance of Mg2Si0.89(Sn0.1,Sb0.01) thermoelectric (TE) materials. The coating forms a dense and adherent barrier that suppresses oxygen diffusion and mitigates mechanical degradation during cyclic oxidation, demonstrating its potential to improve the long‐term ...
Mikdat Gurtaran +3 more
wiley +1 more source
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi +3 more
wiley +1 more source
Can Ti‐Based MXenes Serve as Solid Lubricants for Brake Applications? A Tribological Study
This study explores the first implementation of Ti‐based MXenes materials in brake pad friction composite material. The resulting composite material exhibits a 48% reduction in the wear rate; alongside significant improvements are observed for thermal and mechanical properties.
Eslam Mahmoud +7 more
wiley +1 more source

