Results 241 to 250 of about 1,841,336 (346)

Coupling Interfacial Redox‐Reactions with In Situ Proton Generation for the Photoelectrochemical Separation of Rare‐Earth Elements

open access: yesAdvanced Functional Materials, EarlyView.
To enhance the sustainability of electrochemical separations for resource recovery, a photoelectrochemical ion recovery system is developed that utilizes renewable solar energy. A composite integrating titianium dioxide nanorods and a redox‐copolymer enables spontaneous cation adsorption and light‐activated redox reactions for regeneration, thus ...
Ki‐Hyun Cho   +3 more
wiley   +1 more source

Suberin in plants: biosynthesis, regulation, and its role in salt stress resistance. [PDF]

open access: yesFront Plant Sci
Chen R   +7 more
europepmc   +1 more source

Transient Stiffness Patterning in Hydrogels Driven by Dissipative Mechanochemical Coupling

open access: yesAdvanced Functional Materials, EarlyView.
Force‐induced disulfide bond rupture in a polymer‐based hydrogel, coupled with chemical or electrochemical reoxidation, leads to the transient modulation of the hydrogel's stiffness properties. High spatiotemporal control is achieved by this dissipative process, enabling the development of out‐of‐equilibrium stiffness patterns and transient, dose ...
Roberto Baretta   +2 more
wiley   +1 more source

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries

open access: yesNature Communications, 2013
Liumin Suo   +4 more
semanticscholar   +1 more source

Advanced Nano‐Fibrillated Cellulose/Modified MXene Janus Membrane for Continuous 24‐h Water‐Power Co‐Generation

open access: yesAdvanced Functional Materials, EarlyView.
The Janus membrane integrates a superhydrophilic CNF@CTAB‐MXene layer with a superhydrophobic PTFE layer, enabling efficient solar‐driven water evaporation and electricity generation. It achieves an evaporation rate of 1.51 kg m−2 h−1 with excellent salt resistance and long‐term stability.
Yinan Li   +7 more
wiley   +1 more source

Deciphering a New Electrolyte Formulation for Intelligent Modulation of Thermal Runaway to Improve the Safety of Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Diels‐Alder clicks chemistry addresses thermal runaway in lithium‐ion batteries. A thermoresponsive electrolyte with lithium salt in vinylene carbonate (VC) and 2,5‐dimethylfuran (DMFu) operates at room temperature but undergoes Diels‐Alder reactions at high temperatures, enabling a two‐step safety mechanism: a warning phase at ≈100 °C and complete ...
Arnab Ghosh   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy