Results 1 to 10 of about 136,194 (301)

Curvature Invariants of Statistical Submanifolds in Kenmotsu Statistical Manifolds of Constant ϕ-Sectional Curvature [PDF]

open access: yesEntropy, 2018
In this article, we consider statistical submanifolds of Kenmotsu statistical manifolds of constant ϕ-sectional curvature. For such submanifold, we investigate curvature properties. We establish some inequalities involving the normalized δ-Casorati
Simona Decu   +3 more
doaj   +2 more sources

On the Tachibana numbers of closed manifolds with pinched negative sectional curvature

open access: diamondДифференциальная геометрия многообразий фигур, 2020
Conformal Killing form is a natural generalization of con­formal Killing vector field. These forms were exten­si­vely studied by many geometricians. These considerations we­re motivated by existence of various applications for the­se forms.
S.E. Stepanov, I. I. Tsyganok
doaj   +2 more sources

On the Topological Classification of Four-Dimensional Steady Gradient Ricci Solitons with Nonnegative Sectional Curvature [PDF]

open access: goldMathematics
In this paper, we study the topology of steady gradient Ricci solitons with nonnegative sectional curvature. We apply a characterization theorem for the fundamental group of a positively curved steady gradient Ricci soliton that admits a critical point ...
Yuehan Hao
doaj   +2 more sources

Curvature Pinching Problems for Compact Pseudo-Umbilical PMC Submanifolds in Sm(c)×R

open access: yesMathematics, 2023
Let Sm(c) denote a sphere with a positive constant curvature c and Mn(n≥3) be an n-dimensional compact pseudo-umbilical submanifold in a Riemannian product space Sm(c)×R with a nonzero parallel mean curvature vector (PMC), where R is a Euclidean line. In
Wang-Hua Qiu, Xin Zhan
doaj   +1 more source

Norden Golden Manifolds with Constant Sectional Curvature and Their Submanifolds

open access: yesMathematics, 2023
This paper discusses the Norden golden manifold having a constant sectional curvature. First, it is shown that if a Norden golden manifold has a constant real sectional curvature, the manifold is flat.
Fulya Şahin   +2 more
doaj   +1 more source

Pointwise orthogonal splitting of the space of TT-tensors

open access: yesДифференциальная геометрия многообразий фигур, 2023
In the present paper we consider pointwise orthogonal split­ting of the space of well-known TT-tensors on Rieman­nian manifolds. Tensors of the first subspace belong to the ker­nel of the Bourguignon Laplacian, and the tensors of the se­cond subspace ...
S. E. Stepanov, I. I. Tsyganok
doaj   +1 more source

On the geometry of the tangent bundle with gradient Sasaki metric [PDF]

open access: yesArab Journal of Mathematical Sciences, 2023
Purpose – Let (M, g) be a n-dimensional smooth Riemannian manifold. In the present paper, the authors introduce a new class of natural metrics denoted by gf and called gradient Sasaki metric on the tangent bundle TM. The authors calculate its Levi-Civita
Lakehal Belarbi, Hichem Elhendi
doaj   +1 more source

On the geometry of sub-Riemannian manifolds equipped with a canonical quarter-symmetric connection

open access: yesДифференциальная геометрия многообразий фигур, 2023
In this article, a sub-Riemannian manifold of contact type is under­stood as a Riemannian manifold equipped with a regular distribution of codimension-one and by a unit structure vector field orthogonal to this distribution. This vector field is called a
S. V. Galaev
doaj   +1 more source

K- constant type Kahler and Nearly Kahler manifolds for conharmonic curvature tensor

open access: yesTikrit Journal of Pure Science, 2023
The constant of permanence conharmonic type kahler and nearly kahler manifold conditions are obtained when the Nearly Kahler manifold is a manifold conharmonic constant type (K).
Ali A. Shihab, Rana H. jasim
doaj   +1 more source

Strongly positive curvature [PDF]

open access: yes, 2014
We begin a systematic study of a curvature condition (strongly positive curvature) which lies strictly between positive curvature operator and positive sectional curvature, and stems from the work of Thorpe in the 1970s.
Bettiol, Renato G.   +1 more
core   +1 more source

Home - About - Disclaimer - Privacy