Results 81 to 90 of about 2,218,259 (288)

Ultrahigh‐Yield, Multifunctional, and High‐Performance Organic Memory for Seamless In‐Sensor Computing Operation

open access: yesAdvanced Functional Materials, EarlyView.
Molecular engineering of a nonconjugated radical polymer enables a significant enhancement of the glass transition temperature. The amorphous nature and tunability of the polymer, arising from its nonconjugated backbone, facilitates the fabrication of organic memristive devices with an exceptionally high yield (>95%), as well as substantial ...
Daeun Kim   +14 more
wiley   +1 more source

Alkaline earth stannates: The next silicon?

open access: yesAPL Materials, 2015
Semiconductor materials are being used in an increasingly diverse array of applications, with new device concepts being proposed each year for solar cells, flat-panel displays, sensors, memory, and spin transport.
Sohrab Ismail-Beigi   +4 more
doaj   +1 more source

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

Electrical properties of BaTiO3 based – MFIS heterostructure: Role of semiconductor channel carrier concentration

open access: yesAIP Advances, 2014
Effect of semiconductor channel carrier concentration on the modifications in the electrical properties of Ag/BaTiO3/SrTiO3/ZnO Metal-Ferroelectric-Insulator-Semiconductor (MFIS) heterostructure has been investigated.
Megha Vagadia   +5 more
doaj   +1 more source

A Ferroelectric Thin Film Transistor Based on Annealing-Free HfZrO Film

open access: yesIEEE Journal of the Electron Devices Society, 2017
A ferroelectric thin film transistor (Fe-TFT) based on annealing-free hafnium zirconium oxide (HfZrO) is demonstrated in this paper. Indium zinc oxide was used as channel semiconductor. The as-deposited 30-nm HfZrO film implemented as gate dielectric was
Yuxing Li   +11 more
doaj   +1 more source

Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals

open access: yesAdvanced Functional Materials, EarlyView.
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus   +5 more
wiley   +1 more source

In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang   +19 more
wiley   +1 more source

Progress of emerging non-volatile memory technologies in industry

open access: yesMRS Communications
This prospective and performance summary provides a view on the state of the art of emerging non-volatile memory (eNVM) in the semiconductor industry. The overarching aim is to inform academic researchers of the status of these technologies in industry ...
Markus Hellenbrand   +2 more
semanticscholar   +1 more source

Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3

open access: yesAdvanced Functional Materials, EarlyView.
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta   +13 more
wiley   +1 more source

Electroactive Liquid Crystal Elastomers as Soft Actuators

open access: yesAdvanced Functional Materials, EarlyView.
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley   +1 more source

Home - About - Disclaimer - Privacy