Results 101 to 110 of about 1,521,472 (318)

Which Method Best Predicts Postoperative Complications: Deep Learning, Machine Learning, or Conventional Logistic Regression?

open access: yesAnnals of Gastroenterological Surgery, EarlyView.
Deep learning has shown promise in predicting postoperative complications, particularly when using image or time‐series data. However, on tabular clinical data such as the NCD, it often underperforms compared to conventional machine learning. Integrating multimodal data may enhance predictive accuracy and interpretability in surgical care.
Ryosuke Fukuyo   +4 more
wiley   +1 more source

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

SEE: Syntax-aware Entity Embedding for Neural Relation Extraction

open access: yes, 2018
Distant supervised relation extraction is an efficient approach to scale relation extraction to very large corpora, and has been widely used to find novel relational facts from plain text.
Chen, Wenliang   +5 more
core   +1 more source

ChatCFD: A Large Language Model‐Driven Agent for End‐to‐End Computational Fluid Dynamics Automation with Structured Knowledge and Reasoning

open access: yesAdvanced Intelligent Discovery, EarlyView.
Chat computational fluid dynamics (CFD) introduces an large language model (LLM)‐driven agent that automates OpenFOAM simulations end‐to‐end, attaining 82.1% execution success and 68.12% physical fidelity across 315 benchmarks—far surpassing prior systems.
E Fan   +8 more
wiley   +1 more source

Premières réalisations de la période dans le roman de chevalerie : Amadis en français et en allemand

open access: yesCahiers d’Études Germaniques
The romance of chivalry is a genre rather at odds with the period. Nevertheless, forms of complete argumentative movements, marked by syntactic complexity and programming the revelation of information, can be discerned in Des Essarts’ translation of the ...
Pascale MOUNIER, Delphine PASQUES
doaj   +1 more source

Large Language Model‐Based Chatbots in Higher Education

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
The use of large language models (LLMs) in higher education can facilitate personalized learning experiences, advance asynchronized learning, and support instructors, students, and researchers across diverse fields. The development of regulations and guidelines that address ethical and legal issues is essential to ensure safe and responsible adaptation
Defne Yigci   +4 more
wiley   +1 more source

BMPCQA: Bioinspired Metaverse Point Cloud Quality Assessment Based on Large Multimodal Models

open access: yesAdvanced Intelligent Systems, EarlyView.
This study presents a bioinspired metaverse point cloud quality assessment metric, which simulates the human visual evaluation process to perform the point cloud quality assessment task. It first extracts rendering projection video features, normal image features, and point cloud patch features, which are then fed into a large multimodal model to ...
Huiyu Duan   +7 more
wiley   +1 more source

Robust Dysarthric Speech Recognition with GAN Enhancement and LLM Correction

open access: yesAdvanced Intelligent Systems, EarlyView.
This study tackles dysarthric speech recognition by combining generative adversarial network (GAN)‐generated synthetic data with large language model (LLM)‐based error correction. The approach integrates three key elements: an improved CycleGAN to generate synthetic dysarthric speech for data augmentation, a multimodal automatic speech recognition core
Yibo He   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy