Results 41 to 50 of about 129,274 (296)
B cells sense external mechanical forces and convert them into biochemical signals through mechanotransduction. Understanding how malignant B cells respond to physical stimuli represents a groundbreaking area of research. This review examines the key mechano‐related molecules and pathways in B lymphocytes, highlights the most relevant techniques to ...
Marta Sampietro+2 more
wiley +1 more source
Three‐dimensional (3D) biological systems have become key tools in lymphoma research, offering reliable in vitro and ex vivo platforms to explore pathogenesis and support precision medicine. This review highlights current 3D non‐Hodgkin lymphoma models, detailing their features, advantages, and limitations, and provides a broad perspective on future ...
Carla Faria+3 more
wiley +1 more source
Research on Influence mechanism of composite interlaminar shear strength under normal stress
The normal stress along the shear plane has great effect on the composite intralaminar shear strength. However, the influence mechanism on composite interlaminar shear strength under the normal stress along the shear plane was not truly reflected by the ...
Li Fei+3 more
doaj +1 more source
Modification of linear regression method for rock shear strength parameters under triaxial condition
The triaxial strength envelope of rocks is usually nonlinear, and the shear strength parameters obtained by the linear regression method (LRM) are highly sensitive to confining pressure.
LI Bin+3 more
doaj +1 more source
THE INVESTIGATION OF THE STRENGTH REDUCTION FACTOR IN PREDICTING THE SHEAR STRENGTH
Design codes propose to restrict the nominal probability of failure within specific target structural reliability levels using a load factor and a strength reduction factor. In the current ACI318 Code, the strength reduction factor varies from 0.65 to 0.90, and the value considered in predicting the shear strength equals to 0.75.
Arslan, Guray+2 more
openaire +5 more sources
This article advocates integrating temporal dynamics into cancer research. Rather than relying on static snapshots, researchers should increasingly consider adopting dynamic methods—such as live imaging, temporal omics, and liquid biopsies—to track how tumors evolve over time.
Gautier Follain+3 more
wiley +1 more source
Derivation of the shear strength of continuous beams [PDF]
The elastic--full plastic loading curve is for all materials sufficient to explain the strength of beams and beam columns loaded by bending and compression. This theory is extended for the influence of shear stress, and it is shown to be the only way to explain the combined bending-shear strength from test results. Also, the in the past derived bearing
van der Put, T.A.C.M. (author)+1 more
openaire +4 more sources
The tumor microenvironment is a dynamic, multifaceted complex system of interdependent cellular, biochemical, and biophysical components. Three‐dimensional in vitro models of the tumor microenvironment enable a better understanding of these interactions and their impact on cancer progression and therapeutic resistance.
Salma T. Rafik+3 more
wiley +1 more source
Microfluidic electro‐viscoelastic manipulation of extracellular vesicles
The electro‐viscoelastic manipulation as a potential method for separation of particles based on size. The particles introduced as a sheath flow migrate to the channel center under the influence of simultaneously applied electric field and pressure driven flow.
Seyedamirhosein Abdorahimzadeh+7 more
wiley +1 more source
Repeat Expansions in PLIN4 Cause Autosomal Dominant Vacuolar Myopathy With Sarcolemmal Features
ABSTRACT Objective We aim to describe and characterize two unrelated Spanish families suffering from an autosomal dominant autophagic vacuolar myopathy caused by repeat expansions in PLIN4. Methods We evaluated the clinical phenotype and muscle imaging, and performed a genetic workup that included exome sequencing, muscle RNAseq, and long‐read genome ...
Laura Llansó+17 more
wiley +1 more source