Results 101 to 110 of about 6,086 (266)

Broadband, Flexible, Skin‐Compatible Carbon Dots/Graphene Photodetectors for Wearable Applications

open access: yesAdvanced Functional Materials, EarlyView.
Broadband, flexible photodetectors integrating nitrogen‐rich carbon dots with single‐layer graphene on plastic substrates are demonstrated. A biocompatible chitosan–glycerol electrolyte enables efficient low‐voltage gating and on‐skin operation. The devices exhibit ultraviolet‐to‐near‐infrared response, mechanical robustness under bending, and verified
Nouha Loudhaief   +20 more
wiley   +1 more source

Conceptual Approach to Permanent Magnet Synchronous Motor Turn-to-Turn Short Circuit and Uniform Demagnetization Fault Diagnosis

open access: yesActuators
Permanent magnet synchronous motors (PMSMs) play a crucial role in industrial production, and in response to the problem of PMSM turn-to-turn short-circuit and demagnetization faults affecting production safety, this paper proposes a PMSM turn-to-turn ...
Yinquan Yu   +5 more
doaj   +1 more source

Real‐Time, Label‐Free Monitoring of Cell Behavior on a Bioelectronic Scaffold

open access: yesAdvanced Functional Materials, EarlyView.
A bioelectronic nanofibrous scaffold is introduced that supports cell growth while enabling real‐time, label‐free monitoring of cellular behavior through impedance measurements. The system correlates electrical signals with cell viability and surface coverage, offering an integrated platform for studying dynamic biological processes and advancing next ...
Dana Cohen‐Gerassi   +10 more
wiley   +1 more source

Encoding Magnetic Anisotropies in Digital Light Processing 3D Printing

open access: yesAdvanced Functional Materials, EarlyView.
A hybrid magnetic device—combining a coaxial coil within a nested Halbach array—is presented, integrated into a DLP 3D printer to enable spatially resolved magnetic field control. This system enables complex, multimodal responses by programming liquid crystal elastomer resins for magnetic and thermal actuation, and by inducing electrically conductive ...
Eléonore Aïdonidis   +11 more
wiley   +1 more source

Conductive Bonding and System Architectures for High‐Performance Flexible Electronics

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines bonding technologies and structural design strategies that support high‐performance flexible and stretchable electronics. Bonding approaches such as surface‐activated bonding and anisotropic conductive films, together with system‐level architectures including buffer layers and island‐bridge structures, possess distinct mechanical ...
Kazuma Nakajima, Kenjiro Fukuda
wiley   +1 more source

Pixelation‐Free, Monolithic Iontronic Pressure Sensors Enabling Large‐Area Simultaneous Pressure and Position Recognition via Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
A pixelation‐free, monolithic iontronic pressure sensor enables simultaneous pressure and position sensing over large areas. AC‐driven ion release generates spatially varying impedance pathways depending on the pressure. Machine learning algorithms effectively decouple overlapping pressure–position signals from the multichannel outputs, achieving high ...
Juhui Kim   +10 more
wiley   +1 more source

Overcoming Debye Length Limitations in Electrolyte‐Gated Transistor Biosensors Using Nanoscale‐Grooved Oxide Semiconductors Fabricated by Thermal Nanoimprint Lithography

open access: yesAdvanced Functional Materials, EarlyView.
Nanoscale‐grooved indium gallium oxide (IGO) semiconductors, patterned via thermal nanoimprint lithography (NIL) using CD/DVD templates, are integrated into electrolyte‐gated transistor biosensors to overcome Debye length limitations. Precisely engineered concave–convex nanostructures modulate local electrostatic potentials, extend the effective Debye ...
Jong Yu Song   +5 more
wiley   +1 more source

Micro short circuit fault diagnosis in Li-ion cell

open access: yesInternational Journal of Power Electronics and Drive Systems (IJPEDS)
Micro short circuits (MSCs) in lithium-ion battery cells are a critical safety concern, potentially leading to thermal runaway, internal short circuits, overheating, and battery degradation. Compared to normal cells, MSC fault cells exhibit reduced capacity with each charge-discharge cycle and an increasing state of charge (SOC) deviation over time. To
S. Gomathy   +5 more
openaire   +1 more source

Frontier Advances of Emerging High‐Entropy Anodes in Alkali Metal‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Recent advances in microscopic morphology control of high‐entropy anode materials for alkali metal‐ion batteries. Abstract With the growing demand for sustainable energy, portable energy storage systems have become increasingly critical. Among them, the development of rechargeable batteries is primarily driven by breakthroughs in electrode materials ...
Liang Du   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy