Results 241 to 250 of about 15,177,173 (309)

Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine

open access: yesAdvanced Functional Materials, EarlyView.
Chiral engineered biomaterials can selectively influence cell behaviors in regenerative medicine. This review covers chiral engineered biomaterials in terms of their fabrication methods, cellular response mechanisms, and applications in directing stem cell differentiation and tissue function.
Yuwen Wang   +5 more
wiley   +1 more source

Harnessing Outer Space for Improved Electrocaloric Cooling

open access: yesAdvanced Functional Materials, EarlyView.
A novel radiative heat sink/source‐integrated electrocaloric (R‐iEC) system combines the electrocaloric (EC) effect with a thermally conductive radiative cooler (TCRC) to address heat dissipation limitations in EC devices. Utilizing outer space as a heat sink, the system achieves up to 240 W m−2 of heat dissipation performance, making it highly ...
Dong Hyun Seo   +8 more
wiley   +1 more source

Butterfly‐Inspired Hierarchical Hybrid Composites for Lightweight Structural Thermal Management Applications

open access: yesAdvanced Functional Materials, EarlyView.
Emulating nature's unparalleled engineering, this work introduces butterfly‐inspired hybrid composites for high‐performance transportation and defense sectors. Leveraging biomimicry, these lightweight composites feature butterfly leg‐inspired hierarchical fibrous assemblies and butterfly wing‐inspired sandwich‐structured architecture, to achieve ...
Nello D. Sansone   +7 more
wiley   +1 more source

Ultra‐Effective Light‐Activated Antibacterial Activity via Carboxyl Functionalized Graphene Quantum Dots and Films

open access: yesAdvanced Functional Materials, EarlyView.
Carboxyl‐functionalized graphene quantum dots (cGQDs) exhibit high singlet oxygen quantum yield due to strong spin–orbit coupling. cGQDs achieve minimum bactericidal concentration of only 0.4 µg mL−1 against S. aureus under low‐intensity illumination.
Muhammad Hassnain   +10 more
wiley   +1 more source

Shape‐Reconfigurable Crack‐Based Strain Sensor with Ultrahigh and Tunable Sensitivity

open access: yesAdvanced Functional Materials, EarlyView.
A highly sensitive crack‐based sensor with tunable strain detection capabilities is demonstrated through controlled nanocrack formation in a line‐patterned shape memory polymer substrate. The sensor design integrates thermoplastic polyurethane and poly(lactic acid), enabling thermo‐responsive reconfiguration of crack geometry.
Seungjae Lee   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy