Results 191 to 200 of about 155,826 (284)

Visualizing and Quantifying Impact with Mechanochromic Sensing Paints Based on Self‐Assembled Polydiacetylene‐Silk Core‐Shell Vesicles

open access: yesAdvanced Science, EarlyView.
Tracking physical impacts is important in many fields. Self‐assembled microparticles made from polydiacetylene and silk fibroin that change color from blue to red when hit can provide an alternative approach to traditional mechanical transducers, quantitatively visualizing impact with responses ranging from <100 to 770 N.
Marco Lo Presti   +4 more
wiley   +1 more source

Multimodal Layer‐Crossing Interrogation of Brain Circuits Enabled by Microfluidic Axialtrodes

open access: yesAdvanced Science, EarlyView.
The study introduces a flexible microfluidic axialtrode that integrates optical, electrical, and chemical modalities within a single polymer fiber. By redistributing electrodes and fluidic channels along the fiber axis via angled cleaving, it enables simultaneous optogenetic stimulation, electrophysiological recording, and drug delivery across brain ...
Kunyang Sui   +8 more
wiley   +1 more source

A Shear Thickening Colloidal Suspension Functioning via Progressive Impact Jamming with Persistent Lubrication Layer

open access: yesAdvanced Science, EarlyView.
An ionic liquid‐based shear‐thickening fluid (ILSTF) exhibits lubricated dynamics from strong shear thickening to impact‐triggered jamming. A persistent nanometric solvation layer around silica governs both the shear thickening saturation in rheology and jamming front propagation under dynamic impact compression.
Yiran Wu   +6 more
wiley   +1 more source

A Microfiber‐Reinforced Janus Hydrogel E‐Skin With Recyclable Feature for Multimodal Sensing and Gender‐Specific Physiological Monitoring

open access: yesAdvanced Science, EarlyView.
Hydrogel‐based wearable electronics hold great promise for physiological monitoring in privacy‐sensitive regions. In this study, a polyurethane (PU) microfiber‐reinforced gelatin hydrogel e‐skin is developed, boasting multiple advantages such as ultra‐thinness, high toughness, and long‐term skin conformability.
Yarong Ding   +11 more
wiley   +1 more source

Intelligent Soft Opto‐Magnetic Robot for Minimally Invasive Interventional Therapy

open access: yesAdvanced Science, EarlyView.
An intelligent soft opto‐magnetic (iSOM) robot is developed that integrates remote magnetic actuation, skin‐mimic tactile perception, and photothermal ablation in a near‐millimeter‐scale design. It enables precise intraluminal navigation and localized ablation while providing real‐time optical feedback to support safe and accurate minimally invasive ...
Jingjing Guo   +13 more
wiley   +1 more source

Deformation Driven Suction Cups: A Mechanics‐Based Approach to Wearable Electronics

open access: yesAdvanced Science, EarlyView.
Deformation‐driven suction cups enable robust, reversible adhesion of wearable electronics to human skin spanning wide mechanical compliance, without adhesives or tight straps. By integrating mechanics modeling, experiments, and contact mechanics theory, this work reveals how cup geometry, substrate compliance, and interfacial adhesion govern suction ...
Seola Lee   +10 more
wiley   +1 more source

Smart Energy–Harvesting Coating for Moisture–Droplets Based on Ionic Diodes and Transistor–Like Structures

open access: yesAdvanced Science, EarlyView.
A smart power‐generating coating is developed to harvest energy from both ambient humidity and impacting liquid droplets. The integrated system delivers sustained open‐circuit voltages of 0.85 V from moisture and up to 36 V from droplets. Its scalable coating architecture enables a continuous power supply for low‐power electronic devices.
Liang Ma   +5 more
wiley   +1 more source

Salt Water Drops Slide Faster: Ionic Modulation of Drop Friction

open access: yesAdvanced Science, EarlyView.
Salt ions markedly accelerate water drops on conductive substrates coated with nanometer‐thin hydrophobic layers. Across diverse electrolytes and surfaces, higher ion concentration consistently lowers kinetic friction by reducing contact angle hysteresis.
Dongho Shin   +6 more
wiley   +1 more source

Dendritic Nano‐Based Slippery Coating by Synergistic Mechanical and Electrostatic Interactions with Persistent and Exceptional Combats Thrombosis

open access: yesAdvanced Science, EarlyView.
A novel dendritic nano‐based slippery coating (DNSC), fabricated by encapsulating carboxyl silicone oil within amino dendritic silica nanoparticles and co‐embedding them in an epoxy resin matrix. The dendritic architecture enhances nanoparticle dispersion in the matrix and establishes mechanical interlock.
Shu Zhang   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy