Results 181 to 190 of about 954,705 (294)

Spatiotemporal Control Over Protein Release from Artificial Cells via a Light‐Activatable Protease

open access: yesAdvanced Biology, EarlyView.
Stimulus‐responsive protein release is essential for intercellular communication. Mimicking this functionality in artificial cells is promising to study the working principles of cellular signaling. Herein, an engineered light‐activatable protease is implemented in a coacervate‐based artificial cell platform to establish user‐defined spatiotemporal ...
Arjan Hazegh Nikroo   +4 more
wiley   +1 more source

A multilevel social network approach to studying multiple disease-prevention behaviors. [PDF]

open access: yesSci Rep
Vörös A   +10 more
europepmc   +1 more source

Light‐Triggered Protease‐Mediated Release of Actin‐Bound Cargo from Synthetic Cells

open access: yesAdvanced Biology, EarlyView.
TEV Prtoease‐mediated Releasable Actin‐binding Protein (TRAP) is a protein‐based platform consisting of a cargo tightly bound to reconstituted actin networks in synthetic cells which can be proteolyticly released from the bound actin, followed by its secretion through membrane translocation mediated by a cell‐penetrating peptide.
Mousumi Akter   +3 more
wiley   +1 more source

Social network analysis as a new tool to measure academic impact of physicians. [PDF]

open access: yesLaryngoscope Investig Otolaryngol
Vivek N   +13 more
europepmc   +1 more source

Current and Future Cornea Chip Models for Advancing Ophthalmic Research and Therapeutics

open access: yesAdvanced Biology, EarlyView.
This review analyzes cornea chip technology as an innovative solution to corneal blindness and tissue scarcity. The examination encompasses recent developments in biomaterial design and fabrication methods replicating corneal architecture, highlighting applications in drug screening and disease modeling while addressing key challenges in mimicking ...
Minju Kim   +3 more
wiley   +1 more source

Coacervates Composed of Low‐Molecular‐Weight Compounds– Molecular Design, Stimuli Responsiveness, Confined Reaction

open access: yesAdvanced Biology, EarlyView.
Coacervation driven by liquid‐liquid phase separation (LLPS) of biopolymers has garnered increasing attention in biology since this leads to the formation of membraneless organelles capable of performing essential yet largely unknown functions. This review highlights recent advances in coacervates (artificial condensates) composed of low‐molecular ...
Sayuri L. Higashi, Masato Ikeda
wiley   +1 more source

Activation of SIRT1 Reduces Renal Tubular Epithelial Cells Fibrosis in Hypoxia Through SIRT1‐FoxO1‐FoxO3‐Autophagy Pathway

open access: yesAdvanced Biology, EarlyView.
Hypoxia promotes the epithelial‐mesenchymal transition (EMT) of renal tubular epithelial cells via the SIRT1‐FoxO1‐FoxO3‐autophagy pathway, thereby resulting in the fibrosis of renal tubular epithelial cells. Activation of SIRT1 or induction of autophagy inhibits this process, alleviating hypoxia‐induced fibrosis.
Guangyu Wang   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy