Results 141 to 150 of about 77,385 (296)

Handed Magnon Propagation in Easy‐Axis Antiferromagnetic α‐Fe2O3

open access: yesAdvanced Materials, EarlyView.
Coherent excitation and detection of handed magnons are achieved in the easy‐axis antiferromagnet α‐Fe2O3. An external magnetic field lifts the degeneracy between left‐ and right‐handed magnons without affecting their propagation velocity. The Dzyaloshinskii–Moriya interaction and anisotropy modulate their amplitude and damping, enabling intrinsic ...
Chang Xu   +3 more
wiley   +1 more source

Autonomous Hydrogel Actuators Programmed by Endogenous Biochemical Logic for Dual‐Stage Morphing and Drug Release

open access: yesAdvanced Materials, EarlyView.
A 3D‐printed BSA–PEGDA bilayer actuator performs biochemical logic, bending autonomously in acid and releasing its drug payload only when both acid and pepsin are present. This dual‐stage, enzyme‐gated mechanism enables autonomous catch‐and‐release motion and controlled gastric drug delivery, representing a programmable soft material powered by ...
Yuchen Liu   +3 more
wiley   +1 more source

Ammonium Salts as Curing Agents to Obtain Ionic Epoxy Resins With a Thermoplastic‐to‐Thermoset Transition

open access: yesAdvanced Materials, EarlyView.
Ionic epoxy networks are prepared using ammonium salts as hardeners, leading to a two‐stage curing process with a thermoplastic‐like intermediate. This uncommon behavior enables extrusion and fabrication of thermoplastic prepregs that can be cured into thermoset composites.
Izabela Kurowska   +10 more
wiley   +1 more source

Liquid Metal Microrobots for Magnetically Guided Transvascular Navigation

open access: yesAdvanced Materials, EarlyView.
Liquid metal‐based microrobots combine magnetic steering, intrinsic X‐ray visibility and softness, to navigate blood vessels even against flow. Under clinically relevant magnetic fields, liquid metal microrobots roll along vessel walls, cross endothelial barriers, and accumulate in target tissues.
Xiaohui Ju   +7 more
wiley   +1 more source

Rewriting Polymer Fate via Chemomechanical Coupling

open access: yesAdvanced Materials, EarlyView.
This work introduces a life‐like “living” polymer platform that can grow, degrow, and reprogram its properties after fabrication. By integrating mass transport, reversible polymerization, and controlled catalysis, the material achieves on‐demand changes in size, shape, and mechanical properties.
Jiahe Huang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy