Results 181 to 190 of about 2,162,371 (314)

Dammarenediol II enhances etoposide‐induced apoptosis by targeting O‐GlcNAc transferase and Akt/GSK3β/mTOR signaling in liver cancer

open access: yesMolecular Oncology, EarlyView.
Etoposide induces DNA damage, activating p53‐dependent apoptosis via caspase‐3/7, which cleaves PARP1. Dammarenediol II enhances this apoptotic pathway by suppressing O‐GlcNAc transferase activity, further decreasing O‐GlcNAcylation. The reduction in O‐GlcNAc levels boosts p53‐driven apoptosis and influences the Akt/GSK3β/mTOR signaling pathway ...
Jaehoon Lee   +8 more
wiley   +1 more source

A COLLABORATIVE FRAMEWORK TO SUPPORT SOFTWARE PROCESS IMPROVEMENT BASED ON THE REUSE OF PROCESS ASSETS

open access: gold, 2008
Fuensanta Medina‐Domínguez   +4 more
openalex   +1 more source

Correlation of the differential expression of PIK3R1 and its spliced variant, p55α, in pan‐cancer

open access: yesMolecular Oncology, EarlyView.
PIK3R1 undergoes alternative splicing to generate the isoforms, p85α and p55α. By combining large patient datasets with laboratory experiments, we show that PIK3R1 spliced variants shape cancer behavior. While tumors lose the protective p85α isoform, p55α is overexpressed, changes linked to poorer survival and more pronounced in African American ...
Ishita Gupta   +10 more
wiley   +1 more source

Basroparib inhibits YAP‐driven cancers by stabilizing angiomotin

open access: yesMolecular Oncology, EarlyView.
Basroparib, a selective tankyrase inhibitor, suppresses Wnt signaling and attenuates YAP‐driven oncogenic programs by stabilizing angiomotin. It promotes AMOT–YAP complex formation, enforces cytoplasmic YAP sequestration, inhibits YAP/TEAD transcription, and sensitizes YAP‐active cancers, including KRAS‐mutant colorectal cancer, to MEK inhibition.
Young‐Ju Kwon   +4 more
wiley   +1 more source

Development of digital learning tools for medical education with agile scrum methodology. [PDF]

open access: yesBMC Med Educ
Puncher JS   +17 more
europepmc   +1 more source

Microfluidic electro‐viscoelastic manipulation of extracellular vesicles

open access: yesFEBS Open Bio, EarlyView.
The electro‐viscoelastic manipulation as a potential method for separation of particles based on size. The particles introduced as a sheath flow migrate to the channel center under the influence of simultaneously applied electric field and pressure driven flow.
Seyedamirhosein Abdorahimzadeh   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy