Results 131 to 140 of about 2,448,775 (294)

Light‐Responsive Enzyme‐Loaded Nanoparticles for Tunable Adhesion and Mechanical Wound Contraction

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a photoactivatable enzyme‐loaded mesoporous nanoparticle system (MPDA_PaTy) that enables light‐triggered tunable tissue adhesion and facilitates mechanical wound contraction. Controlled enzymatic crosslinking at tissue or hydrogel interfaces allows on‐demand adhesion.
Junghyeon Ko   +10 more
wiley   +1 more source

Near‐Infrared Organic Photovoltaic Electrodes for Subretinal Neurostimulation

open access: yesAdvanced Functional Materials, EarlyView.
Organic photovoltaic electrodes based on the D18:Y6 blend enable precise and light‐controlled activation of retinal ganglion cells in a degenerating retina. NIR Light‐driven activation of retinal ganglion cells, tunable stimulation parameters, and biocompatibility with human retinal organoids highlight their potential for next‐generation prosthetics ...
Andrea Corna   +10 more
wiley   +1 more source

Tailoring the Properties of Functional Materials With N‐Oxides

open access: yesAdvanced Functional Materials, EarlyView.
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich   +5 more
wiley   +1 more source

Harmonizing the Pyrene and Ether Groups in Covalent Triazine Polymers for Highly Effective H2O2 Photosynthesis via One‐Step Two‐Electron Oxygen Reduction

open access: yesAdvanced Functional Materials, EarlyView.
The pyrene and ether groups are incorporated into the covalent triazine polymer (CTP) structure. The synergistic effect of the two functional groups endows CTP with better electron transfer, light absorption, and oxygen activation properties. An impressive apparent quantum yield (13.2% @420 nm) and a remarkable solar‐to‐chemical conversion efficiency ...
Chong Wang   +10 more
wiley   +1 more source

Solar Urticaria [PDF]

open access: yesThe Journal of Allergy and Clinical Immunology: In Practice, 2015
Hirsh D, Komarow   +4 more
openaire   +2 more sources

Spatially Resolved Click Patterning of Dyes on Graphene for 2D Hybrids with Regiotunable Fluorescence

open access: yesAdvanced Functional Materials, EarlyView.
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra   +12 more
wiley   +1 more source

Growth of Millimeter‐Sized BaTaO2N Single Crystals by an NH3‐Assisted BaCl2 Flux Method

open access: yesAdvanced Functional Materials, EarlyView.
Millimeter‐sized BaTaO2N single crystals are successfully grown from a BaCl2 flux under NH3 flow. Their comprehensive characterization, including dielectric properties, is demonstrated, and the possible growth mechanisms are discussed. Abstract Perovskite‐type oxynitrides have attracted considerable attention due to their excellent photocatalytic ...
Ginji Harada   +2 more
wiley   +1 more source

Solar Retinopathy [PDF]

open access: yesOphthalmology, 2016
Orry, Birdsong   +2 more
openaire   +2 more sources

Solar Concentrators

open access: yesInternational Journal of Applied Sciences, 2010
Solar technology offers great potential in terms of supplying the world's energy needs. However, its current contribution to the world is still limited. The main factor is related to high initial cost of building the system. This paper will provide an up-to-date review of solar concentrators and their benefits to make solar technology affordable.
Muhammad-Sukki, Firdaus   +4 more
openaire   +1 more source

Reducing Open‐Circuit Voltage Losses in Wide‐Bandgap FAPbBr3 Perovskite Solar Cells for Continuous Unassisted Light‐Driven Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
The combination of formamidinium thiocyanate and 1,3‐propane diammonium iodide for bulk and top‐surface passivation, and a ternary fullerene blend to improve energy band alignment, suppresses energy losses in wide‐bandgap FAPbBr3 perovskite solar cells.
Laura Bellini   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy