Results 171 to 180 of about 78,898 (343)

Max '91: Flare research at the next solar maximum [PDF]

open access: yes
To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories.
Bruner, Marilyn   +9 more
core   +1 more source

Tailoring the Properties of Functional Materials With N‐Oxides

open access: yesAdvanced Functional Materials, EarlyView.
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich   +5 more
wiley   +1 more source

Transfer of Entropy between the Magnetic Field and Solar Energetic Particles during an Interplanetary Coronal Mass Ejection

open access: yesThe Astrophysical Journal Letters
The thermodynamics of solar wind bulk plasma have been routinely measured and quantified, unlike those of solar energetic particles (SEPs), whose thermodynamic properties have remained elusive until recently.
M. E. Cuesta   +6 more
doaj   +1 more source

Strain‐Activated Photo‐Dehalogenation Unlocks Low‐Energy One and Two‐Photon 3D Microfabrication

open access: yesAdvanced Functional Materials, EarlyView.
5,14‐NMI‐Cz acts, conversely to its 7,10‐NMI‐Cz(7,10‐'dibromo‐2‐(2,6‐diisopropylphenyl)‐1H‐benzo[lmn]carbazolo[9,1‐bc][2,8]phenanthroline‐1,3(2H)‐dione) counterpart, as modular photoinitiator with panchromatic photoactivity, featuring a weak C–Br bond from geometric strain for efficient Type I & II initiation. These studies demonstrate applicability of
Kacper Piskorz   +10 more
wiley   +1 more source

Solar Eruptive Phenomena Associated with Solar Energetic Electron Spectral Types

open access: yesThe Astrophysical Journal
The energy spectral shape of solar energetic electron events carries important information on the energetic electron source/acceleration at the Sun. We investigate the association of six newly identified solar energetic electron spectral types with solar
Wen Wang   +5 more
doaj   +1 more source

Distribution of Detected Properties of Solar Energetic Particles [PDF]

open access: bronze, 2021
Tian-Qi Qian   +4 more
openalex   +1 more source

Harmonizing the Pyrene and Ether Groups in Covalent Triazine Polymers for Highly Effective H2O2 Photosynthesis via One‐Step Two‐Electron Oxygen Reduction

open access: yesAdvanced Functional Materials, EarlyView.
The pyrene and ether groups are incorporated into the covalent triazine polymer (CTP) structure. The synergistic effect of the two functional groups endows CTP with better electron transfer, light absorption, and oxygen activation properties. An impressive apparent quantum yield (13.2% @420 nm) and a remarkable solar‐to‐chemical conversion efficiency ...
Chong Wang   +10 more
wiley   +1 more source

Time-dependent Acceleration and Escape of Charged Particles at Traveling Shocks in the Near-Sun Environment

open access: yesThe Astrophysical Journal
Current multi-spacecraft in situ measurements allow for the investigation of the time evolution of energetic particles at interplanetary shocks (IPs) at small (≲0.1 au) heliocentric distances. The energy spectrum of accelerated particles at IPs was shown
Thomas M. Do   +5 more
doaj   +1 more source

Spatially Resolved Click Patterning of Dyes on Graphene for 2D Hybrids with Regiotunable Fluorescence

open access: yesAdvanced Functional Materials, EarlyView.
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra   +12 more
wiley   +1 more source

Full‐Spectrum Solar Harvesting and Desalination Enabled by Supra‐Nano Amorphous Ruthenium Dioxide – Mineral Composites

open access: yesAdvanced Functional Materials, EarlyView.
A mineral‐based supra‐nano amorphous ruthenium dioxide composite (a‐Ru0.5‐AM) was designed, achieving 97% broadband solar absorption. Under one sun, it reaches 87.91 ± 0.32 °C with a distinct thermal buffering effect that favors thermal confinement.
Yunchen Long   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy