Results 91 to 100 of about 105,393 (314)
Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process [PDF]
All solid-state batteries (ASSBs) have the potential to deliver higher energy densities, wider operating temperature range, and improved safety compared with today's liquid-electrolyte-based batteries. However, of the various solid-state electrolyte (SSE)
Banerjee, A +10 more
core
All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks [PDF]
Functioning bulk-type all-solid-state batteries in a practical form factor with composite positive electrodes, using Al-substituted Li7La3Zr2O12 (LLZO) as the solid electrolyte, have been demonstrated for the first time.
Alvarado, J +7 more
core +1 more source
Geometrically‐Screened, Sterically‐Hindered Additive for Wide‐Temperature Aqueous Zinc‐Ion Batteries
A molecular‑engineering strategy combining steric hindrance tuning with geometric optimization identifies cellobiose as an ideal additive for aqueous zinc‑ion batteries, enabling stable Zn deposition across a wide temperature range from −30 to 50 °C. Abstract Aqueous zinc‐ion batteries (AZIBs) are emerging as a highly promising alternative to lithium ...
Sida Zhang +13 more
wiley +1 more source
Lithium, zinc, sodium, potassium, and magnesium metal batteries have emerged as the core direction of next‐generation energy storage technologies due to their ultrahigh theoretical capacities.
Yunlong Yang +8 more
doaj +1 more source
Lithium metal anode matching solid electrolyte is an effective way to achieve high safety and high specific energy batteries, while the active interface of lithium metal has become a bottleneck problem that limits its application. Here, the challenges by
Kangsheng Huang +6 more
doaj +1 more source
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim +13 more
wiley +1 more source
Battery-supercapacitor hybrid devices bridge the gap between batteries and supercapacitors, offering high energy and power densities with excellent cycling stability. However, integrating their distinct energy storage mechanisms remains challenging.
Omar Gómez Rojas, Wataru Sugimoto
doaj +1 more source
Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. [PDF]
Inferior charge transport in insulating and bulk discharge products is one of the main factors resulting in poor cycling stability of lithium-oxygen batteries with high overpotential and large capacity decay.
Chen, Jie-Sheng +6 more
core +1 more source
A diisopropyl ether (DIPE)‐based, localized, high‐concentration electrolyte is developed to stabilize both electrodes in aqueous zinc batteries. By reducing water activity and promoting anion‐rich zinc‐ion solvation, it builds robust interphases at both the cathode and anode, ensuring uniform deposition, suppressed corrosion, and highly reversible ...
Yuxuan Wu +4 more
wiley +1 more source
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang +13 more
wiley +1 more source

