Results 121 to 130 of about 22,968 (293)

A three‐way electrolyte with ternary solvents for high‐energy‐density and long‐cycling lithium–sulfur pouch cells

open access: yesSusMat
Lithium–sulfur (Li–S) batteries promise high‐energy‐density potential to exceed the commercialized lithium‐ion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides (LiPSs) and Li metal anodes.
Zheng Li   +13 more
doaj   +1 more source

Mitigating the Rock‐Salt Phase Transformation in Disordered LNMO Through Synergetic Solid‐State AlF3/LiF Modifications

open access: yesAdvanced Science, EarlyView.
The transition between the spinel and rock‐salt phases induces irreversible structural changes in disordered LiNi0.5Mn1.5O4, thereby preventing it from fully releasing its electrochemical capacity during charge/discharge cycling. Abstract High‐voltage disordered spinel LiNi0.5Mn1.5O4 is a promising cathode material for high power density in lithium‐ion
Xingqi Chang   +9 more
wiley   +1 more source

Electron displacement polarization of high-dielectric constant fiber separators enhances interface stability

open access: yesNature Communications
The electrostatic effects of separators under the internal electric field are often overlooked, leading to the unreliability of traditional theoretical models.
Tao Zhang   +7 more
doaj   +1 more source

Nanodiamond Regulated Electrolyte Enhances Thermal, Chemical and Structural Properties for Highly Reversible Zn Metal Anodes

open access: yesAdvanced Science, EarlyView.
Nanodiamond additives are dispersed in the aqueous electrolyte to organize water molecules, suppress gas evolution and metal corrosion, and guide zinc to deposit more uniformly. Together with enhanced thermal conductivity for fast heat removal, this strategy reduces temperature rise and degradation, enabling safer, more durable rechargeable zinc metal ...
Jiayan Zhu   +7 more
wiley   +1 more source

The future of carbon anodes for lithium-ion batteries: The rational regulation of graphite interphase

open access: yesCarbon Future
Interphase regulation of graphite anodes is indispensable for augmenting the performance of lithium-ion batteries (LIBs). The resulting solid electrolyte interphase (SEI) is crucial in ensuring anode stability, electrolyte compatibility, and efficient ...
Bin Cao   +9 more
doaj   +1 more source

Batteries: Predicting Calendar Aging in Lithium Metal Secondary Batteries: The Impacts of Solid Electrolyte Interphase Composition and Stability (Adv. Energy Mater. 26/2018) [PDF]

open access: yes, 2018
Dufek, Eric J   +6 more
core   +1 more source

Lithium Squarate as Sacrificing Electrolyte Additive for Prelithiation: Case Study in Zero‐Excess Lithium Metal Batteries

open access: yesAdvanced Science, EarlyView.
Active lithium loss (ALL) and capacity fade can be compensated by prelithiation, apparently simple via sacrificing additives e.g., lithium squarates. However, as a cathode additive it ruptures the cathode via gas evolution, while as an electrolyte additive it gets reductively depleted on anode side in course of solid electrolyte interphase (SEI ...
Ibrahim Lawan Abdullahi   +8 more
wiley   +1 more source

Achieving Fast Charging and Superior Cycling Stability Single‐Crystal Ni‐Rich Cathodes by Ultrafast Aqueous Washing

open access: yesAdvanced Science, EarlyView.
Prolonged water washing severely damages the surface layered structure of single‐crystal Ni‐rich cathodes, forming a thick rock‐salt barrier. In contrast, our 3‐min ultrafast washing removes residual lithium while confining surface reconstruction to an ultrathin 2–4 nm layer, thereby unlocking excellent fast‐charging and cycling stability.
Kaixin Liu   +8 more
wiley   +1 more source

Tailoring Sieving Pores and Electrochemical Interface Intercalation for Mechanically Resilient Recycled Micro‐Silicon Anodes

open access: yesAdvanced Science, EarlyView.
Here, an innovative strategy is proposed, using micron‐sized Si recovered from photovoltaic waste as raw material, combined with electrochemical lithium alloying, reacting with CO2 to obtain sieve‐like porous structure design to overcome mechanical dynamic limitations.
Yunan Wei   +4 more
wiley   +1 more source

Construction of a High-Performance Composite Solid Electrolyte Through In-Situ Polymerization within a Self-Supported Porous Garnet Framework

open access: yesNano-Micro Letters
Highlights A scalable tape-casting method produces self-supported porous Li6.4La3Zr1.4Ta0.6O12. Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated.
An-Giang Nguyen   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy