Results 231 to 240 of about 3,038,089 (290)
Abstract Three instruments–Raman spectroscopy, attenuated total reflectance–Fourier transform infrared spectroscopy, and focused beam reflectance measurement–were used to detect sensor faults, mixing faults, and unanticipated chemistry in a system of multicomponent slurries.
Steven H. Crouse +2 more
wiley +1 more source
Domain‐Aware Implicit Network for Arbitrary‐Scale Remote Sensing Image Super‐Resolution
Although existing arbitrary‐scale image super‐resolution methods are flexible to reconstruct images with arbitrary scales, the characteristic of training distribution is neglected that there exists domain shift between samples of various scales. In this work, a Domain‐Aware Implicit Network (DAIN) is proposed to handle it from the perspective of domain
Xiaoxuan Ren +6 more
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
opXRD: Open Experimental Powder X‐Ray Diffraction Database
We introduce the Open Experimental Powder X‐ray Diffraction Database, the largest openly accessible collection of experimental powder diffractograms, comprising over 92,000 patterns collected across diverse material classes and experimental setups. Our ongoing effort aims to guide machine learning research toward fully automated analysis of pXRD data ...
Daniel Hollarek +23 more
wiley +1 more source
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas +4 more
wiley +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source
This study introduces a tree‐based machine learning approach to accelerate USP8 inhibitor discovery. The best‐performing model identified 100 high‐confidence repurposable compounds, half already approved or in clinical trials, and uncovered novel scaffolds not previously studied. These findings offer a solid foundation for rapid experimental follow‐up,
Yik Kwong Ng +4 more
wiley +1 more source
A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley +1 more source

