Results 261 to 270 of about 3,260,687 (367)
From Rigid to Soft Robotic Approaches for Neuroendoscopy
Robotic assistance has had minimal impact on deep intraventricular surgeries, where small‐scale, precision, and reduced invasiveness can contribute to improved patient outcomes. Emerging technologies in rigid, soft, and hybrid robotics are reviewed to identify the most promising mechanisms for deep brain navigation in addition to an attempt to identify
Kieran Gilday +3 more
wiley +1 more source
Transcriptomic Signature of Spatial Navigation in Brains of Desert Ants. [PDF]
Jaimes-Nino LM +6 more
europepmc +1 more source
Mechanisms underlying spatial navigation
How do our brains learn & remember locations and navigate towards them? Here I present three strands of work that address this general question. First, I investigate the information conveyed by grid cells, whose firing fields tile the environment in a hexagonal grid. In doing so, they are thought to provide a static map of space.
openaire +2 more sources
Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang +5 more
wiley +1 more source
Consumption of a diet high in fat and sugar is associated with worse spatial navigation ability in a virtual environment. [PDF]
Tran DMD +4 more
europepmc +1 more source
Recent Advances in Variable‐Stiffness Robotic Systems Enabled by Phase‐Change Materials
Phase‐change materials (PCMs), such as shape memory alloys, hydrogels, shape memory polymers, liquid crystal elastomers, and low‐melting‐point alloys, are driving advancements in stiffness‐tunable robotic systems across a wide range of applications. This review highlights recent progress in PCM‐enabled robotics, focusing on their underlying mechanisms,
Sukrit Gaira +5 more
wiley +1 more source
High-definition tDCS modulates activation during spatial navigation in healthy older adults
Benjamin M. Hampstead, Justin F. Hartley
openalex +2 more sources
Learning Highly Dynamic Skills Transition for Quadruped Jumping Through Constrained Space
A quadruped robot masters dynamic jumps through constrained spaces with animal‐inspired moves and intelligent vision control. This hierarchical learning approach combines imitation of biological agility with real‐time trajectory planning. Although legged animals are capable of performing explosive motions while traversing confined spaces, replicating ...
Zeren Luo +6 more
wiley +1 more source
A codesign multiobjective optimization framework was developed to enhance the morphology and controller of a snake‐like robot driven by artificial muscles. It improved planar locomotion, agility, and power efficiency. The approach optimized link geometry and controller gains, revealing that shorter muscles near joints and longer linkages maximize ...
Ayla Valles, Mahdi Haghshenas‐Jaryani
wiley +1 more source

