Results 61 to 70 of about 479,522 (272)
The first three largest values of the spectral norm of oriented bicyclic graphs [PDF]
Kun Wei, Jianping Li
doaj +1 more source
The results demonstrate a simulation‐driven workflow that applies LSB topology optimization with additive manufacturing constraints to mission‐specific load cases, integrating European Cooperation for Space Standardization compliant verification and manufacturability to develop structurally efficient rover suspension components.
Stelios K. Georgantzinos +11 more
wiley +1 more source
This study uncovers the unexplored role of intermolecular interactions in multiphoton absorption in coordination polymers. By analyzing [Zn2tpda(DMA)2(DMF)0.3], it shows how the electronic coupling of the chromophores and confinement in the MOF enhance two‐and three‐photon absorption.
Simon Nicolas Deger +11 more
wiley +1 more source
First Hyper Zagreb Spectral Radii of Splitting and Shadow Graphs
The spectral radius RS of graph G is a spectral invariant derived from the eigenvalues of the associated matrix for a graph G. It is widely used in fields such as computer science, chemistry, biology, and network analysis.
Ahmad Bilal, Muhammad Mobeen Munir
doaj +1 more source
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu +5 more
wiley +1 more source
This study presents novel anti‐counterfeiting tags with multilevel security features that utilize additional disguise features. They combine luminescent nanosized Ln‐MOFs with conductive polymers to multifunctional mixed‐matrix membranes and powder composites. The materials exhibit visible/NIR emission and matrix‐based conductivity even as black bodies.
Moritz Maxeiner +9 more
wiley +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
The First Zagreb Index, the Laplacian Spectral Radius, and Some Hamiltonian Properties of Graphs
The first Zagreb index of a graph G is defined as the sum of the squares of the degrees of all the vertices in G. The Laplacian spectral radius of a graph G is defined as the largest eigenvalue of the Laplacian matrix of the graph G.
Rao Li
doaj +1 more source
On the maximum spectral radius of multipartite graphs
Let be an integer. A graph is called r – partite if V admits a partition into r parts such that every edge has its ends in different parts. All of the r – partite graphs with given integer r consist of the class of multipartite graphs.
Jian Wu, Haixia Zhao
doaj +1 more source
Enhancing Low‐Temperature Performance of Sodium‐Ion Batteries via Anion‐Solvent Interactions
DOL is introduced into electrolytes as a co‐solvent, increasing slat solubility, ion conductivity, and the de‐solvent process, and forming an anion‐rich solvent shell due to its high interaction with anion. With the above virtues, the batteries using this electrolyte exhibit excellent cycling stability at low temperatures. Abstract Sodium‐ion batteries
Cheng Zheng +7 more
wiley +1 more source

