Results 121 to 130 of about 121,613 (384)

Nanogel Integrated Zwitterionic Injectable Hydrogel with Sequential Drug‐Releasing Capability for the Programmable Repair of Spinal Cord Injury

open access: yesAdvanced Science, EarlyView.
A novel drug‐loaded D/P‐g‐PSB nanogel‐incorporated hydrogel by the electrostatic attraction‐driven self‐assembling process. Sequential drug releasing property (melatonin is released first by physical diffusion, and then ibuprofen is released as the charge shielding effect and hydrogel degradation). This ion‐sensitive hydrogel platform with sequentially
Zhijian Wei   +13 more
wiley   +1 more source

Nusinersen in later-onset spinal muscular atrophy

open access: yesNeurology, 2019
Objective To report results of intrathecal nusinersen in children with later-onset spinal muscular atrophy (SMA). Methods Analyses included children from a phase 1b/2a study (ISIS-396443-CS2; NCT01703988) who first received nusinersen during that study ...
B. Darras   +16 more
semanticscholar   +1 more source

Parabiosis, Assembloids, Organoids (PAO)

open access: yesAdvanced Science, EarlyView.
This review evaluates parabiosis, organoids, and assembloids as complementary disease models spanning systemic, organ, and multi‐organ levels. It highlights their construction strategies, applications, and current limitations, while emphasizing their integration with frontier technologies such as artificial intelligence, organ‐on‐a‐chip, CRISPR, and ...
Yang Hong   +5 more
wiley   +1 more source

From the cell membrane to the nucleus: unearthing transport mechanisms for Dynein [PDF]

open access: yes, 2012
Mutations in the motor protein cytoplasmic dynein have been found to cause Charcot-Marie-Tooth disease, spinal muscular atrophy, and severe intellectual disabilities in humans. In mouse models, neurodegeneration is observed.
A. Friedman   +53 more
core   +1 more source

Advances in Treatment of Spinal Muscular Atrophy – New Phenotypes, New Challenges, New Implications for Care

open access: yesJournal of Neuromuscular Diseases, 2019
Spinal Muscular Atrophy (SMA) is caused by autosomal recessive mutations in SMN1 and results in the loss of motor neurons and progressive muscle weakness.
D. Schorling, A. Pechmann, J. Kirschner
semanticscholar   +1 more source

Microglial HVCN1 Deficiency Improves Movement and Survival of SOD1G93A ALS Mice by Enhancing Microglial Migration and Neuroprotection

open access: yesAdvanced Science, EarlyView.
Hydrogen voltage gated channel 1 (HVCN1) is upregulated in microglia of both ALS patients and its mouse model. HVCN1 deficiency enhances microglial migration via suppressing Akt signaling, promotes neurotrophic capacity and motor function, and prolongs survival of the SOD1G93A ALS mice. This study identifies HVCN1 as a novel, promising druggable target
Fan Wang   +16 more
wiley   +1 more source

Factors modifying the course of spinal muscular atrophy 5q

open access: yesНервно-мышечные болезни
Proximal spinal muscular atrophy 5q (SMA 5q) is a severe autosomal recessive neuromuscular disease characterized by progressive symptoms of flaccid paralysis and muscular atrophy due to degeneration of α-motor neurons of the anterior horns of the spinal ...
M. A. Akhkiamova   +2 more
doaj   +1 more source

4D Printing of Magnetically Responsive Shape Memory Polymers: Toward Sustainable Solutions in Soft Robotics, Wearables, and Biomedical Devices

open access: yesAdvanced Science, EarlyView.
Merging 4D printing with magneto‐responsive shape memory polymers opens new avenues for intelligent, reconfigurable systems. This review navigates cutting‐edge fabrication techniques, magnetic fillers, and smart polymer matrices, unveiling their potential in soft robotics, biomedical devices, and wearable tech.
Kiandokht Mirasadi   +7 more
wiley   +1 more source

Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models [PDF]

open access: yes, 2015
Survival of motor neuron (SMN) deficiency causes spinal muscular atrophy (SMA), but the pathogenesis mechanisms remain elusive. Restoring SMN in motor neurons only partially rescues SMA in mouse models, although it is thought to be therapeutically ...
Bennett, C. F.   +5 more
core   +1 more source

Magnetically Responsive Piezoelectric Nanocapacitors Enhance Neural Recovery Following Spinal Cord Injury via Targeted Spinal Magnetic Stimulation

open access: yesAdvanced Science, EarlyView.
This study presents a novel “in vivo–in vitro” therapeutic strategy for spinal cord injury by leveraging magnetically responsive piezoelectric nanomaterials. These nanomaterials enable targeted delivery of localized electrical stimulation at the injury site through noninvasive external magnetic actuation, thereby promoting axonal regeneration and ...
Zhihang Xiao   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy