Results 271 to 280 of about 211,867 (345)
Is There A Pure Electronic Ferroelectric?
The search for faster, more reliable ferroelectric materials has shifted from traditional lattice‐driven ferroelectrics, which rely on slow ionic displacements, to electronic ferroelectrics, where polarization is governed by electronic ordering. This shift enables ultrafast switching, low‐field operation, and resistance to fatigue.
Xudong Wang +8 more
wiley +1 more source
The impact of polyaniline insertion on the atomic orbitals and electronic structure of vanadium oxide anode is systematically investigated for the first time. The electrode exhibits an outstanding capacity and unprecedent long‐term cycling life, owing to the electron transition to the V 3dxy state and the enhanced diffusion kinetics.
Yue Zhang +6 more
wiley +1 more source
Transport evidence of current-induced nematic Dirac valleys in a parity-time-symmetric antiferromagnet. [PDF]
Sakai H +8 more
europepmc +1 more source
Aqueous Zinc‐Based Batteries: Active Materials, Device Design, and Future Perspectives
This review conducts a comprehensive analysis of aqueous zinc‐based batteries (AZBs) based on their intrinsic mechanisms, including redox reactions, ion intercalation reactions, alloying reactions, electrochemical double‐layer reactions, and mixed mechanisms, systematically discussing recent advancements in each type of AZBs.
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
wiley +1 more source
Fabrication of Composite Cathode for All‐Solid‐State Sodium Batteries
The design of composite cathodes for all‐solid‐state sodium batteries must address three critical challenges—interfacial side reactions, interfacial delamination, and highly tortuous transport pathways. This work outlines structural and interfacial strategies to optimize ion transport and mechanical stability, enabling durable, and high‐performance ...
Gaoming Sun +6 more
wiley +1 more source
From Materials to Systems: Challenges and Solutions for Fast‐Charge/Discharge Na‐Ion Batteries
This review systematically analyzes the key characteristics limiting the fast‐charge/discharge capability of Na‐ion batteries (SIBs) from a multi‐scale perspective encompassing electrode materials, the electrode‐electrolyte interface, and the system. Furthermore, it presents practical solution strategies for the fundamental issues arising at each scale,
Bonyoung Ku +5 more
wiley +1 more source
Engineering Bulk Photovoltaic Effect in 2D Transition Metal Dichalcogenides. [PDF]
Aftab S, Moore AL.
europepmc +1 more source
Beyond Imperfect Match: Silicon/Graphite Hybrid Anodes for High‐Energy–Density Lithium‐Ion Batteries
Silicon/graphite (Si/Gr) hybrid anodes are limited by Si's large volume change and mismatch with Gr. This review offers mechanistic insights into imperfectly matched Si/Gr hybrid anodes, elucidating heterogeneous lithiation behavior and interfacial failure pathways, and thereby informing the design of durable, high‐energy–density lithium‐ion batteries.
Jing Li +6 more
wiley +1 more source
Left-right symmetry breaking: learning from the chicken. [PDF]
Pieper TK, Tsikolia N.
europepmc +1 more source
Copper Contact for Perovskite Solar Cells: Properties, Interfaces, and Scalable Integration
Copper electrodes, as low‐cost, scalable contacts for perovskite solar cells, offer several advantages over precious metals such as Au and Ag, including performance, cost, deposition methods, and interfacial engineering. Copper (Cu) electrodes are increasingly considered practical, sustainable alternatives to noble‐metal contacts in perovskite solar ...
Shuwei Cao +4 more
wiley +1 more source

