Results 131 to 140 of about 672,672 (296)

Machine learning for identifying liver and pancreas cancers through comprehensive serum glycopeptide spectra analysis: a case‐control study

open access: yesMolecular Oncology, EarlyView.
This study presents a novel AI‐based diagnostic approach—comprehensive serum glycopeptide spectra analysis (CSGSA)—that integrates tumor markers and enriched glycopeptides from serum. Using a neural network model, this method accurately distinguishes liver and pancreatic cancers from healthy individuals.
Motoyuki Kohjima   +6 more
wiley   +1 more source

Comprehensive profiling of lncRNAs and mRNAs enriched in small extracellular vesicles for early noninvasive detection of colorectal cancer: diagnostic panel assembly and extensive validation

open access: yesMolecular Oncology, EarlyView.
Small extracellular vesicles are a promising source of diagnostic molecules. We conducted a comprehensive study, including transcriptome profiling and RT‐qPCR validation on large cohorts of samples. Diagnostic panels enabling sensitive detection of colorectal cancer and precancerous lesions were established. Some molecules were differentially expressed
Petra Vychytilova‐Faltejskova   +26 more
wiley   +1 more source

Unveiling unique protein and phosphorylation signatures in lung adenocarcinomas with and without ALK, EGFR, and KRAS genetic alterations

open access: yesMolecular Oncology, EarlyView.
Proteomic and phosphoproteomic analyses were performed on lung adenocarcinoma (LUAD) tumors with EGFR, KRAS, or EML4–ALK alterations and wild‐type cases. Distinct protein expression and phosphorylation patterns were identified, especially in EGFR‐mutated tumors. Key altered pathways included vesicle transport and RNA splicing.
Fanni Bugyi   +12 more
wiley   +1 more source

Wild sports & natural history of the Highlands

open access: green, 1919
Charles St. John   +4 more
openalex   +2 more sources

Targeting of PTP4A3 overexpression sensitises HGSOC cells towards chemotherapeutic drugs

open access: yesMolecular Oncology, EarlyView.
In HGSOC with normal KRAS expression, high PTP4A3 expression regulates autophagy activation. Conversely, in HGSOC with high KRAS expression, KRAS dictates autophagy control, and PTP4A3 is not required. When high PTP4A3 expression is inhibited, HGSOC cells are preferentially sensitised towards DNA‐damaging agents.
Ana López‐Garza   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy