Results 271 to 280 of about 521,807 (336)

GDC: Integration of Multi‐Omic and Phenotypic Resources to Unravel the Genetic Pathogenesis of Hearing Loss

open access: yesAdvanced Science, EarlyView.
Overview of the Genetic Deafness Commons (GDC), integrating data from the Chinese Deafness Genetics Consortium (CDGC) and 51 public databases. The GDC provides tools for variant search, functional predictions, and gene‐disease visualization, offering insights into 201 hearing loss genes and facilitating novel gene discovery and clinical applications ...
Hui Cheng   +11 more
wiley   +1 more source

Genetic Deconvolution of Embryonic and Maternal Cell‐Free DNA in Spent Culture Medium of Human Preimplantation Embryo Through Deep Learning

open access: yesAdvanced Science, EarlyView.
DECENT is a deep learning method that enhances noninvasive preimplantation genetic testing by accurately reconstructing embryonic copy number variations (CNVs) from cell‐free DNA in spent embryo culture media. By mitigating maternal contamination, DECENT improves diagnostic accuracy, even with high contamination levels, offering a reliable, noninvasive
Zhenyi Zhang   +3 more
wiley   +1 more source

LincNEAT1 Encoded‐NEAT1‐31 Promotes Phagocytosis by Directly Activating the Aurora‐A–PI3K–AKT Pathway

open access: yesAdvanced Science, EarlyView.
LincNEAT1 Encoded‐NEAT1‐31 micropeptide directly binds with Aurora‐A and enhanced AKT pathways to pormotes phagocytosis against multi cancer cells. Abstract Macrophages play vital roles in innate and adaptive immunity, and their essential functions are mediated by phagocytosis and antigen presentation.
Jie Li   +8 more
wiley   +1 more source

MYC Binding Near Transcriptional End Sites Regulates Basal Gene Expression, Read‐Through Transcription, and Intragenic Contacts

open access: yesAdvanced Science, EarlyView.
MYC is a transcription factor (TF) that binds DNA near transcriptional start sites (TSSs) and within enhancer elements. Here, unappreciated sites of MYC binding in the vicinity of transcriptional end sites (TESs) of many genes in multiple cell types in association with numerous other TFs are described previously.
Huabo Wang   +5 more
wiley   +1 more source

Piezoelectric Biomaterials for Bone Regeneration: Roadmap from Dipole to Osteogenesis

open access: yesAdvanced Science, EarlyView.
Piezoelectric biomaterials convert mechanical forces into electrical signals, offering novel strategies to restore and modulate bone microenvironments for tissue engineering. This review examines molecular dipole origins, spatial arrangements, and pseudo‐piezoelectric mechanisms and highlights dipole‐engineering techniques for osteogenesis regulation ...
Xiyao Ni   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy