Results 261 to 270 of about 3,470,211 (401)

Mimicking Block Copolymer Self‐Assembly with One‐Pot Synthesized Polyphosphoester Gradient Copolymers

open access: yesAdvanced Functional Materials, EarlyView.
Degradable Polyphosphoester (PPE) gradient copolymers (GCPs) are synthesized via one‐pot copolymerization. We show that GCPs self‐assemble into nanostructures like polymersomes, effectively mimicking the behavior of traditional BCPs. The gradient strength is key, with softer gradients favoring micelles.
Suna Azhdari   +7 more
wiley   +1 more source

Sustainable Catalyst‐Free PLG Networks: Recyclability, Biodegradability, and Functional Performance

open access: yesAdvanced Functional Materials, EarlyView.
A catalyst‐additive free covalent adaptable network is developed from star‐shaped poly(lactide‐co‐glycolide) cross‐linked with pyromellitic dianhydride, enabling internal carboxylic acid‐driven transesterification. The resulting biodegradable network exhibits mechanical robustness (Young's modulus ≈1.6 GPa), complete recyclability, rapid biodegradation
Lars Schwarzer   +2 more
wiley   +1 more source

Dual‐Layer Living Hydrogel Enables On‐Demand Delivery of Phages and Probiotics for Synergistic Wound Infection Therapy

open access: yesAdvanced Functional Materials, EarlyView.
A dual‐layer living hydrogel, ProΦGel, integrates bacteriophages and probiotics for synergistic wound infection therapy. The outer gelatin‐based matrix releases phages on demand in response to P. aeruginosa infections, while inner alginate beads sustain probiotic delivery.
Siyuan Tao   +6 more
wiley   +1 more source

Stock Price Prediction Using LSTM on Indian Share Market

open access: yes, 2019
A. Ghosh   +4 more
semanticscholar   +1 more source

Bioinspired Stabilization of Fluorescent Au@SiO2 Tracers for Multimodal Biological Imaging

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates a bioinspired stabilization strategy for fluorescent gold‐silica nanoparticles. Inspired by natural biosilica maturation, high‐temperature calcination transforms the silica shells, preventing dissolution in cell culture media and intracellular environments.
Wang Sik Lee   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy