Results 301 to 310 of about 11,256,402 (404)

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Induction of Hematopoietic Differentiation of Mouse Embryonic Stem Cells by an AGM-Derived Stromal Cell Line is Not Further Enhanced by Overexpression of HOXB4

open access: green, 2010
Sabrina Gordon-Keylock   +8 more
openalex   +2 more sources

Engineered Mesenchymal Stem Cell–NK Cell Complexes for Spatially Targeted and Functionally Revitalized Cancer Immunotherapy

open access: yesAdvanced Science, EarlyView.
IL‐15‐engineered stem cell–NK cell complexes, assembled via bioorthogonal chemistry, enable effective lung cancer immunotherapy. Abstract Natural killer (NK) cells represent a powerful immunotherapeutic strategy due to their intrinsic cytotoxicity and ability to target tumor cells independently of antigen presentation.
Qian Zhang   +15 more
wiley   +1 more source

Corrigendum to Ruxolitinib improves hematopoietic regeneration by restoring mesenchymal stromal cell function in acute graft-versus-host disease. [PDF]

open access: yesJ Clin Invest
Lin Y   +22 more
europepmc   +1 more source

Endometrial Assembloid Model Reveals Endometrial Gland Development Regulation by Estradiol‐Driven WNT7B Suppression

open access: yesAdvanced Science, EarlyView.
This study developed a 3D endometrial assembloid model to study how uterine glands form and develop. They discovered key interactions between different cell types and identified WNT7B as a regulator controlled by estradiol‐mediated TGFβ1‐VDR interaction.
Xintong Li   +12 more
wiley   +1 more source

Decoding Human Placental Cellular and Molecular Responses to Obesity and Fetal Growth

open access: yesAdvanced Science, EarlyView.
Women with obesity often deliver large‐for‐gestational‐age (LGA) infants. Single‐nucleus RNA sequencing of term placenta reveals that hypoxia and TNF‐α signaling in syncytiotrophoblasts are featured in maternal obesity, but inflammatory signatures in Hofbauer cells and response to lipid or carbohydrate metabolism in fibroblasts are specific to LGA.
Hong Jiang   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy