Results 161 to 170 of about 194,045 (291)

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

DENTA: A Dual Enzymatic Nanoagent for Self‐Activating Tooth Whitening and Biofilm Disruption

open access: yesAdvanced Functional Materials, EarlyView.
The nanoapatite with dual enzymes (DENTA) accumulates in dentinal tubules, reducing hypersensitivity caused by dental nerve exposure and facilitating continuous ROS generation through salivary glucose for effective, long‐term whitening. The dentin structures remain non‐destructive due to the low concentration of ROS, demonstrating excellent cell ...
Junseok Kim   +13 more
wiley   +1 more source

Strong Convergence Properties and Strong Stability for Weighted Sums of AANA Random Variables

open access: yesAbstract and Applied Analysis, 2013
Zhiyong Chen   +3 more
doaj   +1 more source

Positive‐Tone Nanolithography of Antimony Trisulfide with Femtosecond Laser Wet‐Etching

open access: yesAdvanced Functional Materials, EarlyView.
A butyldithiocarbamic acid (BDCA) etchant is used to fabricate various micro‐ and nanoscale structures on amorphous antimony trisulfide (a‐Sb2S3) thin film via femtosecond laser etching. Numerical analysis and experimental results elucidate the patterning mechanism on gold (reflective) and quartz (transmissive) substrates.
Abhrodeep Dey   +12 more
wiley   +1 more source

Fast‐Responding O2 Gas Sensor Based on Luminescent Europium Metal‐Organic Frameworks (MOF‐76)

open access: yesAdvanced Functional Materials, EarlyView.
Luminescent MOF‐76 materials based on Eu(III) and mixed Eu(III)/Y(III) show rapid and reversible changes in emission intensity in response to O2 with very short response times. The effect is based on triplet quenching of the linker ligands that act as photosensitizers. Average emission lifetimes of a few milliseconds turn out to be mostly unaffected by
Zhenyu Zhao   +5 more
wiley   +1 more source

Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride

open access: yesAdvanced Functional Materials, EarlyView.
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley   +1 more source

Unveiling Phonon Contributions to Thermal Conductivity and the Applicability of the Wiedemann—Franz Law in Ruthenium and Tungsten Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
Thermal transport in Ru and W thin films is studied using steady‐state thermoreflectance, ultrafast pump–probe spectroscopy, infrared‐visible spectroscopy, and computations. Significant Lorenz number deviations reveal strong phonon contributions, reaching 45% in Ru and 62% in W.
Md. Rafiqul Islam   +14 more
wiley   +1 more source

Encapsulating Zinc Powder in MXene/Silk Scaffolds with Zincophilic‐Hydrophobic Polymer for Flexible Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work develops flexible zinc‐ion batteries (FZIBs) using a zincophilic/hydrophobic polymer (thermoplastic polycarbonate‐based polyurethane, TPCU) to protect Zn powder anodes and MXene/Silk (MXS) as flexible current collectors. The designed TPCU‐ZnP@MXS structure enables uniform Zn deposition, yielding dendrite‐free anodes with stable cycling ...
Zixuan Yang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy