Results 21 to 30 of about 8,015 (151)
We introduce a nucleic acid nanoparticle (NANP) platform designed to be rrecognized by the human innate immune system in a regulated manner. By changing chemical composition while maintaining constant architectural parameters, we identify key determinants of immunorecognition enabling the rational design of NANPs with tunable immune activation profiles
Martin Panigaj +21 more
wiley +1 more source
A W/NbOx/Pt memristor demonstrates the coexistence of volatile, non‐volatile, and threshold switching characteristics. Volatile switching serves as a reservoir computing layer, providing dynamic short‐term processing. Non‐volatile switching, stabilized through ISPVA, improves reliable long‐term readout. Threshold switching operates as a leaky integrate
Ungbin Byun, Hyesung Na, Sungjun Kim
wiley +1 more source
Tabular foundation model interrogates the synthetic likelihood of metal−organic frameworks. Abstract Metal–organic frameworks (MOFs) are celebrated for their chemical and structural versatility, and in‑silico screening has significantly accelerated their discovery; yet most hypothetical MOFs (hMOFs) never reach the bench because their synthetic ...
Xiaoyu Wu +3 more
wiley +1 more source
Synthetic Nanobiology Actuated Lipometabolic Cell Factory for Autologous Tumor Immunotherapy
FA plays a crucial role in the interaction between tumor cells and the tumor microenvironment, especially for the immune response. A biocatalytic immunoenhancement strategy is developed to boost antitumor immunity by FA metabolic orientation to ceramide. Through the design of this delicate catalytic immunoenhancement strategy, the synthetic nanobiology
Shoujie Zhao +8 more
wiley +1 more source
Circular photogalvanic effect measurements and first‐principles calculations reveal spin‐splitting states in solution‐processed bournonite films (CuPbSbS3) due to structural and bulk inversion asymmetry. The results provide experimental confirmation of coexisting Rashba and Dresselhaus spin‐splitting states in this non‐centrosymmetric chalcogenide ...
Aeron McConnell +5 more
wiley +1 more source
Geometry‐Dependent Adhesion in Transparent Monodomain Liquid Crystal Elastomers
Liquid Crystal Elastomers (LCEs) are emerging as exciting pressure‐sensitive adhesives. We examine adhesion in chemically identical elastomer films, exploring the influence of geometry (director orientation) and phase (nematic or isotropic). We demonstrate the potential of these aligned films as transparent, tunable, broad‐temperature‐range smart ...
Aidan Street +3 more
wiley +1 more source
Nano‐ and Micro‐Sized Solid Materials Used as Antiviral Agents
Due to the rise of viral infections in humans and possible viral outbreaks, the use of nano‐ or micro‐sized materials as antiviral agents is rapidly increasing. This review explores their antiviral properties against RNA and DNA viruses, either as a prevention or a treatment tool, by delving into their mechanisms of action and how to properly assess ...
Orfeas‐Evangelos Plastiras +6 more
wiley +1 more source
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández +7 more
wiley +1 more source
Beyond the Edge: Charge‐Transfer Excitons in Organic Donor‐Acceptor Cocrystals
Complex excitonic landscapes in acene–perfluoroacene cocrystals are unveiled by polarization‐resolved optical spectroscopy and many‐body theory. This systematic study of a prototypical model system for weakly interacting donor–acceptor compounds challenges common views of charge‐transfer excitons, providing a refined conceptual framework for ...
Sebastian Anhäuser +6 more
wiley +1 more source
Amyloidogenic Peptide Fragments Designed From Bacterial Collagen‐like Proteins Form Hydrogel
This study identified amyloidogenic sequence motifs in bacterial collagen‐like proteins and exploited these to design peptides that self‐assemble into β‐sheet fibers and form hydrogels. One hydrogel supported healthy fibroblast growth, showing promise for biocompatible materials. Our work demonstrates that bacterial sequences can be harnessed to create
Vamika Sagar +5 more
wiley +1 more source

