Results 91 to 100 of about 14,742,743 (348)

Decoding the dual role of autophagy in cancer through transcriptional and epigenetic regulation

open access: yesFEBS Letters, EarlyView.
Transcriptional and epigenetic regulation controls autophagy, which exerts context‐dependent effects on cancer: Autophagy suppresses tumorigenesis by maintaining cellular homeostasis or promotes tumor progression by supporting survival under stress. In this “In a Nutshell” article, we explore the intricate mechanisms of the dual function of autophagy ...
Young Suk Yu, Ik Soo Kim, Sung Hee Baek
wiley   +1 more source

Autophagy in cancer and protein conformational disorders

open access: yesFEBS Letters, EarlyView.
Autophagy plays a crucial role in numerous biological processes, including protein and organelle quality control, development, immunity, and metabolism. Hence, dysregulation or mutations in autophagy‐related genes have been implicated in a wide range of human diseases.
Sergio Attanasio
wiley   +1 more source

Protonophore activity of short‐chain fatty acids induces their intracellular accumulation and acidification

open access: yesFEBS Letters, EarlyView.
The protonated form of butyrate, as well as other short‐chain fatty acids (SCFAs), is membrane permeable. In acidic extracellular environments, this can lead to intracellular accumulation of SCFAs and cytosolic acidification. This phenomenon will be particularly relevant in acidic environments such as the large intestine or tumor microenvironments ...
Muwei Jiang   +2 more
wiley   +1 more source

Modifications in FLAP's second cytosolic loop influence 5‐LOX interaction, inhibitor binding, and leukotriene formation

open access: yesFEBS Letters, EarlyView.
The enzyme 5‐lipoxygenase (5‐LOX) catalyzes the first step in the biosynthesis of leukotrienes (LTs) involved in inflammatory pathophysiology. After cellular stimulation, 5‐LOX translocates to the nucleus, interacting with the 5‐LOX‐activating protein (FLAP) to form LTA4 from arachidonic acid (AA).
Erik Romp   +5 more
wiley   +1 more source

Brucella NyxA and NyxB dimerization enhances effector function during infection

open access: yesFEBS Letters, EarlyView.
Brucella abortus thrives inside cells thanks to the translocation of effector proteins that fine‐tune cellular functions. NyxA and NyxB are two effectors that destabilize the nucleolar localization of their host target, SENP3. We show that the Nyx proteins directly interact with each other and that their dimerization is essential for their function ...
Lison Cancade‐Veyre   +4 more
wiley   +1 more source

Magnetic bead technology for viral RNA extraction from serum in blood bank screening

open access: yesBrazilian Journal of Infectious Diseases, 2011
Nucleic acid amplification testing (NAT) was recently recommended by Brazilian legislation and has been implemented at some blood banks in the city of São Paulo, Brazil, in an attempt to reduce blood-born transmission of human immunodeficiency virus (HIV)
Guilherme Ambrozio Albertoni, PhD Students   +7 more
doaj  

The carboxylate “gripper” of the substrate is critical for C‐4 stereo‐inversion by UDP‐glucuronic acid 4‐epimerase

open access: yesFEBS Letters, EarlyView.
UDP‐glucuronic acid 4‐epimerase (UGAepi) catalyzes NAD+‐dependent interconversion of UDP‐glucuronic acid (UDP‐GlcA) and UDP‐galacturonic acid (UDP‐GalA) via C4‐oxidation, 4‐keto‐intermediate rotation, and C4‐reduction. Here, Borg et al. examined the role of the substrate's carboxylate group in the enzymic mechanism by analyzing NADH‐dependent reduction
Annika J. E. Borg   +2 more
wiley   +1 more source

Epstein-Barr virus DNA load and its association with Helicobacter pylori infection in gastroduodenal diseases

open access: yesBrazilian Journal of Infectious Diseases, 2011
Helicobacter pylori and Epstein-Barr virus (EBV) infections are common worldwide. Although H. pylori infection is a major factor in gastroduodenal diseases, its role in association with EBV infection is unknown.
Sanket Kumar Shukla, PhD Students   +7 more
doaj  

Home - About - Disclaimer - Privacy