Results 211 to 220 of about 958,754 (322)

A Perspective on Powder Metallurgy and Additive Manufacturing of High‐Nitrogen Alloyed Stainless Steels

open access: yesAdvanced Engineering Materials, EarlyView.
This perspective article explores an innovative powder metallurgical approach to producing high‐nitrogen steels by utilizing a mixture of stainless steel and Si3N4. This mixture undergoes hot isostatic pressing followed by direct quenching. The article also examines adapting this method to laser powder bed fusion (PBF‐LB/M) to overcome nitrogen ...
Louis Becker   +5 more
wiley   +1 more source

Advances in Hybrid Icing and Frosting Protection Strategies for Optics, Lens, and Photonics in Cold Environments Using Thin‐Film Acoustic Waves

open access: yesAdvanced Engineering Materials, EarlyView.
This article provides a comprehensive overview of fundamentals and recent advances of transparent thin‐film surface acoustic wave technologies on glass substrates for monitoring and prevention/elimination of fog, ice, and frost. Fogging, icing, or frosting on optical lenses, optics/photonics, windshields, vehicle/airplane windows, and solar panel ...
Hui Ling Ong   +11 more
wiley   +1 more source

Consolidate Overview of Ribonucleic Acid Molecular Dynamics: From Molecular Movements to Material Innovations

open access: yesAdvanced Engineering Materials, EarlyView.
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley   +1 more source

Powder Metallurgy and Additive Manufacturing of High‐Nitrogen Alloyed FeCr(Si)N Stainless Steel

open access: yesAdvanced Engineering Materials, EarlyView.
The alloying element Nitrogen enhances stainless steel strength, corrosion resistance, and stabilizes austenite. This study develops austenitic FeCr(Si)N steel production via powder metallurgy. Fe20Cr and Si3N4 are hot isostatically pressed, creating an austenitic microstructure.
Louis Becker   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy