Results 91 to 100 of about 910,007 (330)

Application of symmetric orthogonal multiwavelets and prefilter technique for image compression

open access: yesJournal of Computer Science and Technology, 2003
Multiwavelets are new addition to the body of wavelet theory. There are many types of symmetric multiwavelets such as Geronimo-Hardin-Massopust (GHM) and Chui-Lian (CL) multiwavelets.
Jiazhong Chen   +4 more
doaj  

Symmetric Nonnegative Matrix Factorization Based on Box-Constrained Half-Quadratic Optimization

open access: yesIEEE Access, 2020
Nonnegative Matrix Factorization (NMF) based on half-quadratic (HQ) functions was proven effective and robust when dealing with data contaminated by continuous occlusion according to the half-quadratic optimization theory.
Bo-Wei Chen
doaj   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

Fuzzy Symmetric Solutions of Fuzzy Matrix Equations

open access: yesAdvances in Fuzzy Systems, 2012
The fuzzy symmetric solution of fuzzy matrix equation AX˜=B˜, in which A is a crisp m×m nonsingular matrix and B˜ is an m×n fuzzy numbers matrix with nonzero spreads, is investigated.
Xiaobin Guo, Dequan Shang
doaj   +1 more source

Adalimumab‐Poloxamer Conjugate for Bio‐Better: Enhanced Stability and Function

open access: yesAdvanced Functional Materials, EarlyView.
Antibody‐polymer conjugates, particularly poloxamer conjugates, enhance antibody stability by improving tolerance to physicochemical stress and attenuating proteolysis by proteases. Furthermore, the higher affinity observed with poloxamer conjugation compared to standard PEGylation results in improved therapeutic efficacy in rheumatoid arthritis mouse ...
Jaewon Roh   +3 more
wiley   +1 more source

The Generalized Bisymmetric (Bi-Skew-Symmetric) Solutions of a Class of Matrix Equations and Its Least Squares Problem

open access: yesAbstract and Applied Analysis, 2014
The solvability conditions and the general expression of the generalized bisymmetric and bi-skew-symmetric solutions of a class of matrix equations (AX=B, XC=D) are established, respectively.
Yifen Ke, Changfeng Ma
doaj   +1 more source

Symmetric multisplitting of a symmetric positive definite matrix

open access: yesLinear Algebra and its Applications, 1998
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Cao, Zhi-Hao, Liu, Zhong-Yun
openaire   +1 more source

Engineering Porous Hollow Metal‐Poly(Heptazine Imide) Spheres: An Optimized Synthetic Strategy for Controlling Surface, Morphology, and Properties

open access: yesAdvanced Functional Materials, EarlyView.
Hollow poly(heptazine imide) spheres are prepared through a novel approach that integrates hard templating with ionothermal synthesis. This method enables precise control over surface area, pore volume, hydrophilicity, light absorption, band position, and metal composition. These tunable properties facilitate the customized design of semiconductors for
Lingli Ni   +10 more
wiley   +1 more source

All‐in‐One Analog AI Hardware: On‐Chip Training and Inference with Conductive‐Metal‐Oxide/HfOx ReRAM Devices

open access: yesAdvanced Functional Materials, EarlyView.
An all‐in‐one analog AI accelerator is presented, enabling on‐chip training, weight retention, and long‐term inference acceleration. It leverages a BEOL‐integrated CMO/HfOx ReRAM array with low‐voltage operation (<1.5 V), multi‐bit capability over 32 states, low programming noise (10 nS), and near‐ideal weight transfer.
Donato Francesco Falcone   +11 more
wiley   +1 more source

Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy