Results 151 to 160 of about 437,708 (290)
We retrospectively analyzed clinical data from patients who underwent hepatectomy for hepatocellular carcinoma (HCC) using LCA‐based grading system. These findings provide a new risk stratification framework for the design of precision surgery to treat patients with HCC.
Ling Liu +5 more
wiley +1 more source
The Development and Psychometric Properties of a Doctoral Student Agency Scale. [PDF]
Huang L, Ruan Q, Wang K.
europepmc +1 more source
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob +2 more
wiley +1 more source
Knowledge Distillation in Object Detection: A Survey from CNN to Transformer. [PDF]
Shehzadi T +5 more
europepmc +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Enhancing deep learning interpretability for hand-crafted feature-guided histologic image classification via weak-to-strong generalization. [PDF]
Fan Z +6 more
europepmc +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
A vision-language foundation model for Alzheimer's disease diagnosis using MRI and clinical data. [PDF]
Lin PJ +11 more
europepmc +1 more source
This study integrates random matrix theory (RMT) and principal component analysis (PCA) to improve the identification of correlated regions in HIV protein sequences for vaccine design. PCA validation enhances the reliability of RMT‐derived correlations, particularly in small‐sample, high‐dimensional datasets, enabling more accurate detection of ...
Mariyam Siddiqah +3 more
wiley +1 more source
Cross-lingual sparse-MoE distillation for efficient low-resource assamese-english and bodo-english translation. [PDF]
Nath B, Gulzar Y.
europepmc +1 more source

