Results 111 to 120 of about 882,319 (334)

Influence of key polymer attributes, manufacturing conditions and sintering on abuse deterrence of physical barrier type abuse deterrent formulations (ADF) [PDF]

open access: yes, 2016
When sintering us used to treat tablet formulations containing polyethylene oxide (PEO), the polymer particles are able to form stronger bonds thereby increase tablet tensile strength. This increase in strength can make it more difficult for an abuser to
Boyce, Heather   +8 more
core   +1 more source

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

High‐Concentration Mesogen‐Assisted Exfoliation of Low‐Dimensional Nanomaterials for Achieving Ultralow‐Temperature Actuations of Liquid Crystal Elastomers

open access: yesAdvanced Functional Materials, EarlyView.
Most matter is nominally frozen in the polar regions or space, and liquid crystal materials are no exception. Consequently, soft actuators, including liquid crystal elastomers (LCEs), are inoperative under such extreme cold in response to stimuli, as their motion relies on mechanical deformation.
Hyeonseong Kim   +5 more
wiley   +1 more source

Composites of Shellac and Silver Nanowires as Flexible, Biobased, and Corrosion‐Resistant Transparent Conductive Electrodes

open access: yesAdvanced Functional Materials, EarlyView.
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein   +4 more
wiley   +1 more source

Mechanical Properties of Architected Polymer Lattice Materials: A Comparative Study of Additive Manufacturing and CAD Using FEM and µ‐CT

open access: yesAdvanced Functional Materials, EarlyView.
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker   +5 more
wiley   +1 more source

Tuning the tensile modulus of magnetorheological elastomers with magnetically hard powder [PDF]

open access: diamond, 2013
Dmitry Borin   +2 more
openalex   +1 more source

Ion‐Selective Microporous Membranes via One‐Step Copolymerization Enable High‐Performance Redox Flow Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A scalable one‐step copolymerization strategy is developed to produce low‐cost microporous ion exchange membranes that boost both the efficiency and lifespan of flow batteries. When combined with organic electrolytes in aqueous systems, these membranes enable safe and cheap flow battery energy storage, supporting the widespread integration of renewable
Jiaye Liu   +7 more
wiley   +1 more source

Smart, Bio‐Inspired Polymers and Bio‐Based Molecules Modified by Zwitterionic Motifs to Design Next‐Generation Materials for Medical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz   +3 more
wiley   +1 more source

A Bespoke Programmable Interpenetrating Elastomer Network Composite Laryngeal Stent for Expedited Paediatric Laryngotracheal Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
A programmable interpenetrating double‐network architecture, created via 3D‐TIPS printing and resin infusion, synergistically combines thermoplastic and thermosetting elastomers to balance structural rigidity and surface softness—crucial for paediatric laryngeal stents.
Elizabeth F. Maughan   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy