Results 171 to 180 of about 5,768,925 (396)

Microstructural Evolution and Mechanical Performance of Plasma‐Assisted Hybrid Friction Stir Welded Dissimilar Aluminum–Copper Joints

open access: yesAdvanced Engineering Materials, EarlyView.
Plasma‐assisted hybrid friction stir welding of dissimilar AlCu joints employs localized plasma preheating to balance heat input and enhance plastic flow. The optimized process reduces axial force by up to 35%, refines the microstructure, and achieves ≈96% joint efficiency.
Deepak Kumar Yaduwanshi   +3 more
wiley   +1 more source

Study of Calculation for IGBT Loss and Junction Temperature

open access: yesKongzhi Yu Xinxi Jishu, 2016
It introduced a calculation model of IGBT loss based on mathematical simulation method and an equivalent thermal circuit model for IGBT junction temperature calculation,and then put forward a calculation method of continuous loss and instantaneous ...
YANG Hongbo, WANG Zhengyu, HANG Yishan
doaj  

Enhancing Fatigue Performance by Tuning of Residual Stresses in Welded Joints through Nanometallic Multilayer

open access: yesAdvanced Engineering Materials, EarlyView.
This study investigates the fundamental mechanisms of a novel postweld treatment that significantly enhances fatigue performance through engineered residual stress (RS) states. A multiscale approach correlates tensile RS in the nanometallic multilayer coating with corresponding compressive RS in the steel substrate, thereby reducing localized stress ...
Niclas Spalek   +3 more
wiley   +1 more source

Interaction between Molten Al‐Killed Mn–B Steel and Carbon‐Bonded MgO Refractories Based on Recyclates

open access: yesAdvanced Engineering Materials, EarlyView.
High‐temperature interactions between low‐sulfur Al‐killed Mn–B steel and MgO–C refractories (0 and 50 wt% recyclates) are studied via finger immersion tests (1600 °C). Surface‐active elements influence infiltration. MgO/CaS layer forms, along with spinel and calcium silicate.
Matheus Roberto Bellé   +5 more
wiley   +1 more source

Fabrication of Multifunctional FeSi Gyroid Lattice Composites via Additive Manufacturing and Polymer Infiltration

open access: yesAdvanced Engineering Materials, EarlyView.
A two‐step approach combining laser powder bed fusion of FeSi electrical steel with Bakelite infiltration enables the fabrication of multifunctional gyroid lattice composites. The resulting structures exhibit high strength, magnetic anisotropy, and complete polymer infiltration, demonstrating a simple and scalable route toward lightweight, mechanically
Angelo F. Andreoli   +9 more
wiley   +1 more source

Thermal Control Design and Simulation Calculation of the Alpha Particle X-ray Spectrometer

open access: hybrid, 2013
Jiayu Zhang   +8 more
openalex   +1 more source

Four‐Point Bending Tests at High Temperatures on Commercial MgO‐C Refractory Bricks with and Without Recyclate Considering Different Carbon Contents

open access: yesAdvanced Engineering Materials, EarlyView.
Four‐point bending tests are conducted in an argon atmosphere on commercial MgO‐C brick grades with and without MgO‐C recyclate from room temperature up to 1300 °C. No detrimental effect of the MgO‐C recyclates on bending strength is found. Instead, a decisive influence of the total carbon content is observed, with lower total carbon contents ...
Alexander Schramm   +5 more
wiley   +1 more source

Efficient and Scalable Radiative Cooling for Photovoltaics Using Solution‐Processable and Solar‐Transparent Mesoporous Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
Graded refractive index (GRI) structures are prepared from the layer‐by‐layer spray coating of the mesoporous SiO2 nanoparticles, showing high solar transparency and thermal emissivity. Under outdoor conditions, after 50 days, the GRI‐coated photovoltaics show on average 6.65 ± 1.48 °C lower than that of the non‐coated references, maintaining 80.9 ± 8 ...
Heesuk Jung   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy