Results 151 to 160 of about 1,484,358 (406)

Terahertz‐Driven Ultrafast Dynamics of Rare‐Earth Nickelates by Controlling Only the Charge Degree of Freedom

open access: yesAdvanced Functional Materials, EarlyView.
The THz drive of the Mott insulating state of a rare‐earth nickelate induces instantaneous insulator‐metal transition via quantum tunneling of valence electrons across the bandgap. This transition is pure electronic and highly non‐thermal, which may find its applications in ultrafast opto‐electronics with enhanced performance and minimal device size ...
Gulloo Lal Prajapati   +7 more
wiley   +1 more source

State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory

open access: yesGreen Energy and Intelligent Transportation
State of charge (SOC) plays a vital role in the safe, efficient, and stable operation of lithium-ion batteries. Since the difference between the surface temperature and core temperature of batteries under severe conditions can reach 5–10 ​°C, using the ...
Chaoran Li   +7 more
doaj  

Development of a thermal storage module using modified anhydrous sodium hydroxide [PDF]

open access: yes
The laboratory scale testing of a modified anhydrous NaOH latent heat storage concept for small solar thermal power systems such as total energy systems utilizing organic Rankine systems is discussed.
Rice, R. E., Rowny, P. E.
core   +1 more source

Survey of high temperature thermal energy storage

open access: bronze, 1976
T.T. Bramlette   +5 more
openalex   +2 more sources

Enhanced Magnetization Switching Efficiency via Orbital‐Current‐Induced Torque in Ti/Ta (Pt)/CoFeB/MgO Structures

open access: yesAdvanced Functional Materials, EarlyView.
The orbital‐current‐induced torque is investigated as an efficient method for controlling magnetization direction. By introducing Ti as an orbital current source in Ti/Ta (or Pt)/CoFeB/MgO structures, the switching current is reduced by ∼25% compared to a conventional spin‐orbit torque structure of Ta/CoFeB/MgO.
So y. Shin   +3 more
wiley   +1 more source

Dynamic Networks via Polymerizable Deep Eutectic Monomers for Uniform Li+ Transport at Interfaces in Lithium Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The PDEM‐based SIGPE provides a dynamic nanophase from Li+‐bridged molecular self‐association, enhancing electrochemical stability and facilitating uniform Li+ ion flux at the interface. This unique solvation structure results in a hetero species‐driven inorganic‐rich SEI and long‐term cycle stability, suggesting that a PFAS‐free Li+‐containing monomer
Susung Yun   +5 more
wiley   +1 more source

Solar total energy project at Shenandoah, Georgia system design [PDF]

open access: yes
The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site.
Poche, A. J.
core   +1 more source

Excitonic Emission Modulation in GaSe/MoS2 Van Der Waals Heterostructure Via Plasmonic Control of Interlayer Charge Transfer

open access: yesAdvanced Functional Materials, EarlyView.
Plasmonic hybridization enables control of light emission in 2D van der Waals heterojunctions. By stacking multilayer GaSe and monolayer MoS2 on a silver film, light emission is enhanced at the edges due to plasmonic effects. In the center, where these effects are absent, charge transfer led to reduced light emission.
Jung Ho Kim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy