Results 111 to 120 of about 76,555 (293)
Thermoelectric efficiency has three Degrees of Freedom
Thermal energy can be directly converted to electrical energy as a result of thermoelectric effects. Because this conversion realises clean energy technology, such as waste heat recovery and energy harvesting, substantial efforts have been made to search
Chung, Jaywan +2 more
core
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics
The review discusses the challenges of wide and ultrawide bandgap semiconducting oxides as a suitable material platform for photonics. They offer great versatility in terms of tuning microstructure, native defects, doping, anisotropy, and micro‐ and nano‐structuring. The review focuses on their light emission, light‐confinement in optical cavities, and
Ana Cremades +7 more
wiley +1 more source
Ordered three‐dimensional anodic aluminum oxide (3D‐AAO) nanoarchitectures with longitudinal and transverse pores enable architecture‐driven metamaterials. The review maps fabrication advances, including hybrid pulse anodization, and shows how 3D‐AAO templates tailor properties across magnetism, energy, catalysis, and sensing.
Marisol Martín‐González
wiley +1 more source
Machine learning models as part of artificial intelligence have enjoyed a recent surge in answering a long-standing challenge in thermoelectric materials research.
Nikhil K Barua +3 more
doaj +1 more source
Active Learning‐Guided Accelerated Discovery of Ultra‐Efficient High‐Entropy Thermoelectrics
An active learning framework is introduced for the accelerated discovery of high‐entropy chalcogenides with superior thermoelectric performance. Only 80 targeted syntheses, selected from 16206 possible combinations, led to three high‐performance compositions, demonstrating the remarkable efficiency of data‐driven guidance in experimental materials ...
Hanhwi Jang +8 more
wiley +1 more source
Magnetic tunnel junctions (MTJs) using MgO tunnel barriers face challenges of high resistance‐area product and low tunnel magnetoresistance (TMR). To discover alternative materials, Literature Enhanced Ab initio Discovery (LEAD) is developed. The LEAD‐predicted materials are theoretically evaluated, showing that MTJs with dusting of ScN or TiN on ...
Sabiq Islam +6 more
wiley +1 more source
Toward a Consensus Characterization Protocol for Organic Thermoelectrics
We advocate a common consensus on accurate and standardized reporting of performance metrics in the field of organic thermoelectrics. We summarize prevalent issues in the literature and propose a pre‐submission checklist to support the publication of reproducible results.
Bernhard Dörling +14 more
wiley +1 more source
Materials and System Design for Self‐Decision Bioelectronic Systems
This review highlights how self‐decision bioelectronic systems integrate sensing, computation, and therapy into autonomous, closed‐loop platforms that continuously monitor and treat diseases, marking a major step toward intelligent, self‐regulating healthcare technologies.
Qiankun Zeng +9 more
wiley +1 more source
Interband plasmonic nanoresonators for enhanced thermoelectric photodetection
Thermoelectric photodetectors are robust alternatives to photodiodes with applications in extreme environments; however, the poor absorptivity of thermoelectric materials limits their photosensitivity.
Zamiri Golnoush +11 more
doaj +1 more source
By introducing FeCoNi medium‐entropy alloy, the bismuth sulfide (Bi2S3) material achieves a record‐high ZT of 1.1 at 773 K, owing to the solid‐states replacement reaction and the volatilization of low melting‐point metal. This strategy is also applicable to other sulfur‐based thermoelectric materials.
Zi‐Yuan Wang +9 more
wiley +1 more source

