Results 141 to 150 of about 40,582 (335)

Stability of chromium (III) sulfate in atmospheres containing oxygen and sulfur [PDF]

open access: yes
The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique.
Jacob, K. T., Nelson, H. G., Rao, B. D.
core   +1 more source

Self‐Assembled Gallium Sulfide (GaS) Heterostructures Enabling Efficient Water Splitting and Selective Ammonia Sensing

open access: yesAdvanced Functional Materials, EarlyView.
Gallium sulfide (GaS) forms self‐assembled heterostructures with its native oxide, exhibiting high performance in water splitting and ultrasensitive and selective ammonia detection. Surface defects and controlled oxidation enhance catalytic activity and sensing response.
Danil W. Boukhvalov   +13 more
wiley   +1 more source

Highly Sensitive Electrochemical Biosensor Based on Hairy Particles with Controllable High Enzyme Loading and Activity

open access: yesAdvanced Functional Materials, EarlyView.
For the first time, a highly sensitive electrochemical biosensor based on SiO2‐based hairy particles with a grafted PDMAEMA polymer brush containing a quantifiable and large amount of immobilized Laccase is reported. The fabricated biosensor exhibits a sensitivity of 0.14 A·m⁻¹, a limit of detection (LOD) of 0.1 µm, and a detection range of 0.3–750 µm,
Pavel Milkin   +7 more
wiley   +1 more source

Fine‐Tunning BaCo0.4Fe0.4Zr0.1Y0.1O3−δ‐Based Air Electrodes for Reversible Protonic Ceramic Cells via Co‐Engineering A‐site Deficiency and Nickel Content

open access: yesAdvanced Functional Materials, EarlyView.
A synergistic strategy combining A‐site deficiency and B‐site nickel doping yielded a BCFZYN‐095‐01 nanocomposite air electrode for reversible protonic ceramic cells with superior ORR/OER activities. B‐site deficiency in the perovskite lattice enhances proton conduction, and nickel doping within the bulk facilitates oxygen transport.
Mingzhuang Liang   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy