Results 91 to 100 of about 57,447 (291)
First measurement of $\Lambda_c$ baryon production in Au+Au collisions
at $\sqrt{s_{\rm NN}}$ = 200 GeV
, 2020 We report on the first measurement of the charmed baryon $\Lambda_c^{\pm}$
production at midrapidity ($|y|$ $Adam, J., Adamczyk, L., Adams, J. R., Adkins, J. K., Agakishiev, G., Aggarwal, M. M., Ahammed, Z., Alekseev, I., Anderson, D. M., Aparin, A., Aschenauer, E. C., Ashraf, M. U., Atetalla, F. G., Attri, A., Averichev, G. S., Bairathi, V., Barish, K., Behera, A., Bellwied, R., Bhasin, A., Bielcik, J., Bielcikova, J., Bland, L. C., Bordyuzhin, I. G., Brandenburg, J. D., Brandin, A. V., Butterworth, J., Caines, H., Cebra, D., Chakaberia, I., Chaloupka, P., Chan, B. K., Chang, F-H., Chang, Z., Chankova-Bunzarova, N., Chatterjee, A., Chen, D., Chen, J. H., Chen, X., Chen, Z., Cheng, J., Cherney, M., Chevalier, M., Choudhury, S., Christie, W., Crawford, H. J., Csanád, M., Daugherity, M., Dedovich, T. G., Deppner, I. M., Derevschikov, A. A., Didenko, L., Dong, X., Drachenberg, J. L., Dunlop, J. C., Edmonds, T., Elayavalli, R. Kunnawalkam, Elsey, N., Engelage, J., Eppley, G., Esha, R., Esumi, S., Evdokimov, O., Ewigleben, J., Eyser, O., Fatemi, R., Fazio, S., Federic, P., Fedorisin, J., Feng, C. J., Feng, Y., Filip, P., Finch, E., Fisyak, Y., Francisco, A., Fulek, L., Gagliardi, C. A., Galatyuk, T., Geurts, F., Gibson, A., Gopal, K., Grosnick, D., Guryn, W., Hamad, A. I., Hamed, A., Harris, J. W., He, W., He, X., Heppelmann, S., Heppelmann, S., Herrmann, N., Hoffman, E., Holub, L., Hong, Y., Horvat, S., Hu, Y., Huang, H. Z., Huang, S. L., Huang, T., Huang, X., Humanic, T. J., Huo, P., Igo, G., Isenhower, D., Jacobs, W. W., Jena, C., Jentsch, A., JI, Y., Jia, J., Jiang, K., Jowzaee, S., Ju, X., Judd, E. G., Kabana, S., Kabir, M. L., Kagamaster, S., Kalinkin, D., Kang, K., Kapukchyan, D., Kauder, K., Ke, H. W., Keane, D., Kechechyan, A., Kelsey, M., Khyzhniak, Y. V., Kikoła, D. P., Kim, C., Kimelman, B., Kincses, D., Kinghorn, T. A., Kisel, I., Kiselev, A., Kisiel, A., Kocan, M., Kochenda, L., Kosarzewski, L. K., Kramarik, L., Kravtsov, P., Krueger, K., Kumar, L., Kwasizur, J. H., Lacey, R., Lan, S., Landgraf, J. M., Lauret, J., Lebedev, A., Lednicky, R., Lee, J. H., Leung, Y. H., Li, C., Li, W., Li, W., Li, X., Li, Y., Liang, Y., Licenik, R., Lin, T., Lin, Y., Lisa, M. A., Liu, F., Liu, H., Liu, P., Liu, P., Liu, T., Liu, X., Liu, Y., Liu, Z., Ljubicic, T., Llope, W. J., Longacre, R. S., Lukow, N. S., Luo, S., Luo, X., Ma, G. L., Ma, L., Ma, R., Ma, Y. G., Magdy, N., Majka, R., Mallick, D., Margetis, S., Markert, C., Matis, H. S., Mazer, J. A., Minaev, N. G., Mioduszewski, S., Mohanty, B., Mooney, I., Moravcova, Z., Morozov, D. A., Mudiyanselage, N. Kulathunga, Nagy, M., Nam, J. D., Nasim, Md., Nayak, K., Neff, D., Nelson, J. M., Nemes, D. B., Nie, M., Nigmatkulov, G., Niida, T., Nogach, L. V., Nonaka, T., Odyniec, G., Ogawa, A., Oh, S., Okorokov, V. A., Page, B. S., Pak, R., Pandav, A., Panebratsev, Y., Pawlik, B., Pawlowska, D., Pei, H., Perkins, C., Pinsky, L., Pintér, R. L., Pluta, J., Porter, J., Posik, M., Pruthi, N. K., Przybycien, M., Putschke, J., Qiu, H., Quintero, A., Radhakrishnan, S. K., Ramachandran, S., Ray, R. L., Reed, R., Ritter, H. G., Roberts, J. B., Rogachevskiy, O. V., Romero, J. L., Ruan, L., Rusnak, J., Sahoo, N. R., Sako, H., Salur, S., Sandweiss, J., Sato, S., Schmidke, W. B., Schmitz, N., Schweid, B. R., Seck, F., Seger, J., Sergeeva, M., Seto, R., Seyboth, P., Shah, N., Shahaliev, E., Shanmuganathan, P. V., Shao, M., Shen, F., Shen, W. Q., Shi, S. S., Shou, Q. Y., Sichtermann, E. P., Sikora, R., Simko, M., Singh, J., Singha, S., Smirnov, N., Solyst, W., Sorensen, P., Spinka, H. M., Srivastava, B., Stanislaus, T. D. S., STAR Collaboration, Stefaniak, M., Stewart, D. J., Strikhanov, M., Stringfellow, B., Suaide, A. A. P., Sumbera, M., Summa, B., Sun, X. M., Sun, Y., Sun, Y., Surrow, B., Svirida, D. N., Szymanski, P., Sánchez, M. Calderón de la Barca, Tang, A. H., Tang, Z., Taranenko, A., Tarnowsky, T., Thomas, J. H., Timmins, A. R., Tlusty, D., Tokarev, M., Tomkiel, C. A., Trentalange, S., Tribble, R. E., Tribedy, P., Tripathy, S. K., Tsai, O. D., Tu, Z., Ullrich, T., Underwood, D. G., Upsal, I., Van Buren, G., Vanek, J., Vasiliev, A. N., Vassiliev, I., Videbæk, F., Vokal, S., Voloshin, S. A., Wang, F., Wang, G., Wang, J. S., Wang, P., Wang, Y., Wang, Y., Wang, Z., Webb, J. C., Weidenkaff, P. C., Wen, L., Westfall, G. D., Wieman, H., Wissink, S. W., Witt, R., Wu, Y., Xiao, Z. G., Xie, G., Xie, W., Xu, H., Xu, N., Xu, Q. H., Xu, Y., Xu, Y. F., Xu, Z., Xu, Z., Yang, C., Yang, Q., Yang, S., Yang, Y., Yang, Z., Ye, Z., Ye, Z., Yi, L., Yip, K., Zbroszczyk, H., Zha, W., Zhang, D., Zhang, S., Zhang, S., Zhang, X. P., Zhang, Y., Zhang, Z., Zhang, Z. J., Zhao, J., Zhong, C., Zhou, C., Zhu, X., Zhu, Z., Zurek, M., Zyzak, M. +356 morecore +1 more sourceIdentification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus
Frontiers in Microbiology, 2015 Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E.Benedikt Leis, A. Angelov, Markus Mientus, Haijuan Li, V. T. Pham, Benjamin Lauinger, P. Bongen, J. Pietruszka, Luís G. Gonçalves, H. Santos, W. Liebl +10 moresemanticscholar +1 more sourceMetagenomics for Bacteriology [PDF]
, 2015 The study of bacteria, or bacteriology, has gone through transformative waves since its inception in the 1600s. It all started by the visualization of bacteria using light microscopy by Antonie van Leeuwenhoek, when he first described “animalcules ...del Castillo, Erika, Izard, Jacquescore +1 more sourceAssessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines [PDF]
, 2016 Funding Information: This research received financial support from the Bill and Melinda Gates Foundation (grant number OPP52641). AWW and JP were supported by the Wellcome Trust [grant number 098051]. AWW and the Rowett Institute of Nutrition and Health, Abdelahi, Faraji, Ensink, Jeroen H. J., Gibson, Walter, Gundogdu, Ozan, Ijaz, Umer Zeeshan, Nguyen, Viet-Anh, Parkhill, Julian, Quince, Christopher, Sudgen, Steven, Torondel, Belen, Walker, Alan W. +10 morecore +4 more sourcesSupervised Learning of Protein Melting Temperature: Cross‐Species vs. Species‐Specific Prediction
Proteins: Structure, Function, and Bioinformatics, Volume 93, Issue 12, Page 2158-2166, December 2025.ABSTRACT
Protein melting temperatures are important proxies for stability, and frequently probed in protein engineering campaigns, for instance for enzyme discovery and protein optimization. With the emergence of large datasets of melting temperatures for diverse natural proteins, it has become possible to train models to predict this quantity, and the Sebastián García López, Jesper Salomon, Wouter Boomsma +2 morewiley +1 more sourceThermostable Aldolase from Thermus aquaticus [PDF]
Journal of Bacteriology, 1970 Data are presented on the purification and properties of the thermostable fructose-1,6-diphosphate aldolase of Thermus aquaticus , a nonsporulating, extreme thermophile. The enzyme shows little activity at temperatures below 60 C and optimal activity at about 95 C.H, Freeze, T D, Brockopenaire +2 more sourcesTruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol
Nature Communications, 2016 Single cell genomic analysis needs DNA amplification with high fidelity and accuracy. Here, the authors devise a novel multiple displacement amplification method called TruePrime that is based in Thermus thermophilusPrimPol and Phi29 DNA polymerase, and ...Ángel J. Picher, Bettina Budeus, Oliver Wafzig, Carola Krüger, Sara García-Gómez, María I. Martínez-Jiménez, Alberto Díaz-Talavera, Daniela Weber, Luis Blanco, Armin Schneider +9 moredoaj +1 more source